首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 537 毫秒
1.
邢晨  程亮  朱彬  陈逸 《金属热处理》2022,47(10):58-64
为研究马氏体TiAl合金的热变形行为,对Ti-42.1Al-8.3V合金进行1320 ℃油淬,得到马氏体,然后利用Gleeble-1500D热模拟试验机研究了马氏体在变形温度为1000~1150 ℃、应变速率为0.001~1 s-1下的热变形行为。利用背散射电子成像(BSE)和背散射衍射(EBSD)研究了热变形参数对TiAl合金显微组织的影响,通过分析真应力-真应变曲线,结合双曲正弦方程建立了本构方程。结果表明,马氏体TiAl合金的流变应力曲线符合动态再结晶特征,峰值应力随着变形温度的降低和应变速率的增大而增大;通过计算得到n为2.175,变形激活能Q为595.79 kJ/mol,并构建了马氏体TiAl合金的本构方程;在热变形后,TiAl合金中近等边三角形排布的马氏体转变成α2/γ片层结构。随着变形温度的升高和应变速率的减小,α2/γ片层逐步被再结晶晶粒替代,最后在变形温度为1100 ℃、应变速率为0.001 s-1条件下全部转化为等轴晶。另外,随着应变速率的降低和变形温度的升高,晶粒充分长大,逐渐粗化。  相似文献   

2.
研究微量Ca添加对AlMg5热变形过程中微观结构稳定性和动态回复行为的影响。研究手段包括扫描电子显微术(SEM)、差示扫描量热法(DSC)、电子背散射衍射(EBSD)分析和透射电子显微术(TEM)。利用JMatPro程序包对合金的凝固路径进行模拟。结果表明,Ca的加入对铸态试样的显微组织和热压缩行为没有影响,但能阻止均匀化过程中晶粒的急剧长大。在热压缩过程中,无Ca合金中的粗晶粒促进合金的动态回复,减缓动态再结晶,其再结晶晶粒的主要形核机制是粒子激发形核。另一方面,热压缩含Ca合金的显微组织受到Al_4Ca金属间化合物的显著影响。通过JMatPro预测,并通过DSC、SEM和TEM揭示Al_4Ca相的形成。最后,在含Ca合金的晶界处发现Al_4Ca析出相通过Zener钉扎效应阻碍α(Al)相的增长,提高均匀化过程中微观结构的稳定性。  相似文献   

3.
基于热压缩试验,研究变形温度和预变形对(TiB+Y2O3)双增强相近α钛基复合材料显微组织演变的影响。结果表明:热变形时析出的硅化物的尺寸随变形温度的升高而增大,但其析出数量呈先增加后减少的趋势。预变形使硅化物的析出位置由α/β界面或β块扩散到整个基体组织。动态再结晶是复合材料晶粒细化的主要原因,由预变形引入的位错加速连续动态再结晶的进程。在变形时,位错在断裂的TiBw和富集的Y2O3增强相周围大量增殖和聚集,推动局部晶粒的细化。不同于TiBw和Y2O3对晶粒细化的影响,根据其分布位置的不同,纳米硅化物分别通过钉扎晶界和阻碍位错运动促进α晶粒的动态再结晶。  相似文献   

4.
采用gleeble-1500热模拟试验机及分离式霍普金森压杆技术,对TC6钛合金试样进行高温准静态(0.01s-1)压缩试验及室温高应变率(103s-1)剪切试验,通过光学显微镜及透射电镜对比研究2种变形条件下材料微结构演化特点。结果表明:在2种变形条件下材料微结构演化显著不同。在高温准静态条件下变形时,TC6钛合金微结构演化经历了4个阶段:等轴状α相变形为板条状→板条状α相断裂,同时出现动态再结晶晶粒→动态再结晶晶粒长大→发生α/β相变;在高应变率加载条件下变形时,TC6钛合金微结构演化经历了3个阶段:等轴状α相变形为板条状→位错的快速运动,板条状α相变形为更为细长狭窄的长条状→长条状α相断裂,同时出现少量动态再结晶晶粒;在2种变形条件下,TC6钛合金均发生了动态再结晶,但高温准静态下,动态再结晶晶粒较多且发生长大,尺寸为3~5μm,而高应变率加载条件下形成的动态再结晶晶粒较少且没有长大,尺寸为0.1~0.2μm。  相似文献   

5.
对冷拉拔变形量为60%的钛合金进行700~880℃,1~240min再结晶退火,利用金相显微镜、X射线衍射仪和透射电镜等手段分析不同状态下的组织演变、织构组成和位错组态。结果表明:冷变形后的Ti6Al4V合金经完全再结晶后α晶粒呈等轴状,β相在α相周围以条状沿α晶界析出或以小晶粒形式存在。计算表明,经60%冷变形量的钛合金再结晶激活能为107kJ/mol,较相同变形量的纯钛再结晶激活能高约50%。钛合金的再结晶分为回复、形核和晶核长大阶段,包括位错胞向亚晶转变、回复亚晶通过合并或长大形核、形核诱导高角度晶界形成而长大成新晶粒。经过冷拉拔后的丝材,存在着较强的100织构,而在再结晶过程中,沿100方向上产生的回复亚晶优先形核并长大形成新的晶粒。这导致在初始再结晶阶段,再结晶织构与冷变形织构取向一致,而在晶粒长大阶段,原先取向不利的晶粒吞并周围小晶粒长大,形成新的织构组元使原来的织构被弱化。  相似文献   

6.
原位自生颗粒增强金属基复合材料是提高金属材料强韧性的有效途径,采用放电等离子烧结技术(SPS),以氧化石墨烯、碳化硅、氮化硼为增强体,原位自生制备TiAl基复合材料,研究第二相对TiAl基复合材料显微组织演变及室温性能的影响。结果表明,增强体的改变直接影响了TiAl基复合材料第二相形貌和分布。添加石墨烯在TiAl合金α2和γ片层界面处弥散析出微纳米尺度第二相Ti2AlC;添加碳化硅在基体中分别生成微米级晶界相Ti5Si3,微纳米片层间相Ti2AlC;添加氮化硼未能在TiAl合金α2和γ片层界面处析出微纳米第二相,而是纳米级TiB2和Ti2AlN相析出在晶界处与基体形成连续核壳结构;复合添加石墨烯和氮化硼既能在片层间原位析出Ti2AlC相,又能在晶界处形成核壳结构。TiAl基复合材料的室温压缩性能和摩擦磨损性能均得到有效提高,复合添加石墨烯和氮化硼可获得优异的室温力学性能。TiAl基复合材料的...  相似文献   

7.
利用Gleeble-3500型热模拟试验机对M50NiL钢进行了温度为900~1200℃、应变速率为0.01 ~ 50 s-1的热压缩试验,研究了M50NiL钢的热变形行为.结果 表明:在本实验条件下M50NiL钢出现了3种组织,即具有变形晶粒和孪晶的微观组织、新形核再结晶晶粒和锯齿状晶粒的微观组织和完全动态再结晶的微观组织.Z参数值越低,动态再结晶组织就越充分,Z参数值越高,越容易形成变形晶粒和孪晶的微观组织.基于位错密度理论和Avrami形核长大动力学建立了M50NiL钢的物理型本构方程,其能够揭示动态回复和再结晶两种物理机制对流动应力的影响规律.预测的流动应力与实验数据具有很好的相关性,表明该本构方程能够准确地描述M50NiL钢在较宽温度和应变速率范围下的动态回复和动态再结晶行为.  相似文献   

8.
采用Gleeble 2000热模拟试验机研究了不同变形条件对6Cr21 Mn10MoVNbN气阀钢热变形后显微组织的影响.结果表明,6Cr21Mn10MoVNbN钢试样热变形时随变形温度升高动态再结晶晶粒尺寸增大,M7C3相数量先减少后增加;随着变形速率升高或变形后冷却速度加快,再结晶晶粒尺寸和M7C3相数量减小.动态再结晶未完成时,再结晶晶粒随变形量的增加而细化,而M7C3相难以析出;动态再结晶完成后,随变形量的加大,再结晶晶粒粗化和M7C3相数量逐步增多.M7C3相析出是在热变形结束后的冷却过程中进行的,主要在晶界上形核,析出机制为γ0→γ1 M7C3的胞状脱溶.  相似文献   

9.
TiAl合金因其低密度、优异的高温强度、抗蠕变和抗氧化性能而在航空航天和汽车工业中具有广阔的应用前景,但其本质脆性和变形能力差的缺点严重限制其进一步发展。本工作通过交叉包套轧制(CHPR)和一步退火处理实现了800℃下超高塑性Ti-44Al-5Nb-1Mo-2V-0.2B合金板材的制备。利用SEM、EBSD、TEM和拉伸等实验方法考察了TiAl合金的热变形行为、不同轧制和热处理工艺对微观组织和力学性能的影响。结果表明,与单向包套轧制(UHPR)相比,CHPR板材沿厚度方向和板面方向均表现出更高的组织均匀性,微观组织由残余α2/γ片层及其晶界的等轴γ、α2和B2相组成,但残余片层的尺寸较小且含量明显降低,其原因是在CHPR的双向剪切力和压应力的作用下大量残余片层破碎并发生了完全再结晶。CHPR TiAl合金的高温流变软化机制主要包括片层弯曲扭折变形、β/B2相协调变形、α2/γ片层的相变分解、初生和二次孪晶诱导的γ相动态再结晶。随后对CHPR合金进行1200~1340℃的退火热处理,1200℃条件下获得了等轴片层和等轴晶粒...  相似文献   

10.
纯铜动态再结晶过程的元胞自动机模拟   总被引:3,自引:0,他引:3  
基于热加工过程金属学原理,建立了一类改进动态再结晶二维元胞自动机模型,模拟了加工硬化,动态回复、形核及再结晶晶粒长大等一系列过程.利用该模型可得到整个热加工过程流变应力变化,晶粒的形态、晶粒取向及大小.流变应力的大小可由基体与再结晶晶粒位错密度的平均值计算.采用该模型对不同应变,应变率及温度下纯铜动态再结晶过程进行了模拟,模拟结果与相同热变形条件下纯铜实验结果吻合较好.  相似文献   

11.
For precise plastic deformation, microstructure control is essential especially for β-solidifying γ-TiAl alloy with duplex structure. Based on stereology, the microstructure of isothermally compressed γ-TiAl alloy was divided into β0 grains, remnant α2/γ lamellar colonies, α2 and γ grains. The results show that the volume fraction of β0 grains slightly increases in the isothermally compressed γ-TiAl alloy with the increase of height reduction. Meanwhile, the volume fractions of remnant α2/γ lamellar colonies and α2 grains decrease. However, the volume fraction of γ grains increases from 64.39% to 78.47%. According to the quantitative results, the αγ phase transformation was investigated in-depth, and it is found that isothermal compression accelerates the αγ phase transformation. The first αγ phase transformation is similar to ledge-controlled transformation, through which remnant α2/γ lamellar colonies finally convert into γ grains in isothermal compression. The second is achieved by α/γ phase interface immigration.  相似文献   

12.
《Acta Materialia》2004,52(10):2945-2952
The size and morphology evolution of the primary intermetallic particles in a DC-cast AA5182 alloy during homogenization at 470 and 520 °C has been studied. A eutectoid phase transformation of the primary particles Alm(Fe,Mn)  Al3(Fe,Mn) + Al is observed by field emission gun scanning electron microscopy (FEG-SEM) and transmission electron microscopy (TEM). After the transformation, Alm(Fe,Mn) particles become a lamellar mixture of Al3(Fe,Mn) and Al, which is believed to be beneficial to the break-up of the large primary particles during hot rolling. The transformation mechanism and the transformation kinetics have been studied. During isothermal treatment at 520 °C, the fractional transformation rate is mainly controlled by nucleation. At 470 °C, the phase transformation is controlled by both nucleation and growth of Al3(Fe,Mn) in Alm(Fe,Mn) phase.  相似文献   

13.
A modified cellular automaton modeling has been performed to investigate the dynamic strain-induced transformation (DSIT) from austenite (γ) to ferrite (α) in a low carbon steel. In this modeling, the γα transformation, ferrite dynamic recrystallization and the hot deformation were simulated simultaneously. The simulation provides an insight into the mechanism of the ferrite refinement during the DSIT. It is found that the refinement of ferrite grains derived from DSIT was the result of the increasing ferrite nuclei density by the “unsaturated” nucleation, the limited ferrite growth and the ferrite dynamic recrystallization. The effects of prior austenite grain size and strain rate on the microstructural evolution of the DSIT ferrite and the characteristics of the resultant microstructure are also discussed.  相似文献   

14.
在Gleeble-1500热模拟机上对Al-4.10Cu-1.42Mg-0.57Mn-0.12Zr合金在变形温度300°C和应变速度10 s-1下进行热压缩变形,真应变分别为0.2、0.4、0.6和0.8。通过X射线衍射仪、扫描电镜和透射电镜研究合金变形过程中复杂的动态显微组织演变。结果表明:真应力随着应变的增加而迅速增大至峰值,之后随着应变的增加而趋于稳定,呈现动态软化特征。随着应变的增大,位错缠结成胞状与亚晶结构,表明变形过程中发生动态回复。动态析出相S相、θ相和Al3Zr相在变形过程中粗化速度加快。铝基体中析出连续的S相,并发现有不连续的S相在Al3Zr相附近和亚晶界处形核析出。Al3Zr相相对比较稳定,易于在位错和亚晶界处析出。流动软化机制是由于动态回复和动态析出导致位错密度减少而引起的。  相似文献   

15.
The microstructural evolution and special flow behavior of Ti-5Al-2Sn-2Zr-4Mo-4Cr during isothermal compression at a strain rate of 0.0001 s?1 were investigated. The dislocation climbs in elongated α grains resulted in the formation of low-angle boundaries that transform into high-angle boundaries with greater deformation, and the elongated α grains subsequently separated into homogenous globular α grains with the penetration of the β phase. The simultaneous occurrence of discontinuous dynamic recrystallization and continuous dynamic recrystallization in the primary β grains resulted in a trimode grain distribution. The β grains surrounded by dislocations presented an equilateral-hexagonal morphology, which suggests that grain boundary sliding through dislocation climbs was the main deformation mechanism. The true stress–strain curves for 1073 and 1113 K abnormally intersect at a strain of ~0.35, related to the α → β phase transformation and distinct growth of the β grain size.  相似文献   

16.
Effects of a minor Ca addition on microstructural stability and dynamic restoration behavior of AlMg5 during hot deformation were investigated. They were studied using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), electron backscatter diffraction (EBSD) analyses and transmission electron microscopy (TEM). JMatPro package was used for simulation of the solidification path of the alloys. The results show that the addition of Ca does not affect the microstructure and hot compression behavior of the as-cast samples. However, it prevents the drastic grain growth during homogenization. It is found that coarse grains of Ca-free alloy promote the dynamic recovery and slow down the dynamic recrystallization during hot compression. Also, the particle stimulated nucleation is suggested as the main nucleation mechanism of new recrystallized grains for hot compressed Ca-free alloy. On the other hand, the microstructure of the hot compressed Ca-added alloy is greatly affected by the presence of Al4Ca intermetallics. The formation of Al4Ca phase is predicted by JMatPro and revealed by DSC, SEM and TEM studies. Finally, it is found that the presence of Al4Ca precipitates on the grain boundaries of Ca-added alloy prevents the growth of α(Al) by Zener pinning effect and results in the stability of microstructure during homogenization.  相似文献   

17.
Thermodynamic calculation of the two-phase Ti alloy was completed using CompuTherm Pandat™ and Ti data base, followed by isothermal compression of Ti6Al4V (Grade 5), with an initial colony lamellar structure that was performed in the (α+β) and β-phase field. Microstructural evolution and phase transformation were investigated using X-ray diffraction, scanning and transmission electron microscopy. The presence of the Ti3Al or α2 (hcp), the phase stability and transition temperatures were predicted by the Gibbs free energy−temperature and phase fraction−temperature diagrams. The isothermal compression in the (α+β)-phase field is characterized by reorientation and localized kinking of α/β lamellae, and cracking at α/β interphase regions. While in the αβ-phase transformation area, deformation in β-phase and at α/β interphase boundaries, extensive transformation of α into β-phase, martensitic transformation and spheroidization of α-laths mainly characterize this isothermal compression. A complete transformation of α into β single phase occurs in the β-phase field. Ti3Al or α2 (hcp), β (bcc) and α (hcp)-phase, and additional hcp α' and orthorhombic α” phases in a deformed Ti6Al4V are revealed. The flow stress level, the dynamic recovery and dynamic globularization are affected by deformation temperature.  相似文献   

18.
《Intermetallics》2000,8(5-6):629-632
It is reported that there are several different transformation mechanisms of the O phase in different heat treatment conditions in the Ti3Al based alloys. However, very little work has been carried out on the α2→O phase transformation in the Ti3Al–Nb alloys of Nb amounts exceeding 12 at%. In this paper, the formation mechanism of the O phase in the Ti–24Al–14Nb–3V–0.5Mo (at%) alloy has been carried out by means of TEM and HRTEM. The results show that the O phase is directly derived from the primary equiaxed α2 grains with a fine streak contrast, and exists in multivariant forms owing to its different orientations after the alloy is solution treated at 1000°C for 1 h followed by water quenching (WQ) and aged at 650°C for 24 h. The O plates in the primary equiaxed α2 grains exist not only in the form of a single variant, but also in the form of fine α2+O mixtures. The analysis indicates that the formation of the O phase is the result of a phase decomposition, that is the introduction of niobium as the preferred β stabilizer makes the supersaturation of niobium in the primary α2 grains, and the α2 phase containing Niobium separates into Niobium lean and Niobium rich regions through the Niobium diffusion: α2→α2(Nb-lean)+O(Nb-rich). Niobium rich regions transform to the ordered orthorhombic phase (O phase) with a lattice distortion and only a very small composition change. It appears, therefore, that the transformation involves nucleation, growth and coarsening of the O phase by a diffusion mechanism.  相似文献   

19.
The dynamic phase transformation of Ti?5Al?5Mo?5V?1Cr?1Fe alloy during hot compression below the β transus temperature was investigated. Strain-induced α-to-β transformation is observed in the samples compressed at 0?100 K below the β transus temperature. The deformation stored energy by compression provides a significant driving force for the α-to-β phase transformation. The re-distribution of the solute elements induced by defects during deformation promotes the occurrence of dynamic transformation. Orientation dependence for the α-to-β phase transformation promotion is observed between {100}-orientated grains and {111}-orientated grains. Incomplete recovery in {111}-orientated grains would create a large amount of diffusion channels, which is in favor of the α-to-β transformation. The effects of reduction ratio and strain rate on the dynamic phase transformation were also investigated.  相似文献   

20.
《Acta Materialia》2007,55(18):6234-6249
The mesoscale deterministic cellular automaton (CA) method and probabilistic Q-state Potts-based Monte Carlo (MC) model have been adopted to investigate independently the individual growth behavior of ferrite grain during the austenite (γ)–ferrite (α) transformation. In these models, the γα phase transformation and ferrite grain coarsening induced by α/α grain boundary migration could be simulated simultaneously. The simulations demonstrated that both the hard impingement (ferrite grain coarsening) and the soft impingement (overlapping carbon concentration field) have a great influence on the individual ferrite growth behavior. Generally, ferrite grains displayed six modes of growth behavior: parabolic growth, delayed nucleation and growth, temporary shrinkage, partial shrinkage, complete shrinkage and accelerated growth in the transformation. Some modes have been observed before by the synchrotron X-ray diffraction experiment. The mesoscopic simulation provides an alternative tool for investigating both the individual grain growth behavior and the overall transformation behavior simultaneously during transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号