首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
铝合金异步轧制过程中应变演化历程以及该工艺引进的强烈附加剪切应变在轧制变形区内的变化规律细节研究还不充分。建立了不同异速比i下的铝合金板材轧制有限元模型,基于轧板在异步轧制变形区内应变历程计算,对剪切应变、沿轧制方向应变及等效应变进行了分析。结果表明,附加剪切应变在中性点前后存在正负剪切效应,异步轧制引进的总剪切应变γ是正剪切γ+和负剪切γ-的绝对值之和;另外,得到了异速比(同步轧制i=1)对轧板搓轧区宽度、剪切应变历程和等效应变沿厚度分布趋势的影响规律。  相似文献   

2.
对7050铝合金铸锭进行了异速比为1.0、1.2和2.0的异步轧制实验,分析了轧制态及热处理后板材的组织及力学性能。结果表明,异步轧制板材心部变形程度远高于同步轧制板材,剧烈变形导致板材中产生变形带且随着异速比增加剪切带的密度显著增加;经热处理后,异步轧制板材晶粒尺寸比同步轧制减少约30%且分布更加均匀。另外,与小异速比轧制板材相比,大异速比轧制板材经固溶得到均匀细小组织所需的时间显著缩短。力学性能结果表明,异步轧制板材性能得到显著改善,经异速比为1.2异步轧制后的板材其T6态(475℃×1 h+120℃×24 h)强度性能最高(抗拉强度:615 MPa,屈服强度:537 MPa),同时具有优良的塑性(伸长率:15.8%),这主要是由于晶粒细化和均匀组织所致。  相似文献   

3.
研究了铸态和热处理态多相V60Ti20Ni20氢分离合金的异步轧制性能,异速比对合金显微组织、硬度和织构系数的影响。研究表明,异步轧制工艺提升合金轧制性能的效果高于热处理工艺提升的效果。热处理加异步轧制能够有效大幅提升合金的轧制成形性能。合金异步轧制性能随着异速比增加而增加,合金的硬度几乎不随轧制异速比的变化而变化。高的轧制压下量下,合金呈现出明显流变特征,V基固溶体(Vss)和NiTi 相变形量大,沿轧制方向变形伸长,成层状组织。随着合金轧制异速比增加,合金显微组织沿厚度方向逐渐出现低程度的不均匀变形,中心位置变形程度高于同步轧制。异步轧制沿厚度方向引入的剪切变形能在一定程度上弱化合金的轧制织构。  相似文献   

4.
采用ABAQUS软件建立了AA7050铝合金板材异径异步轧制过程的有限元模型并进行了模拟,研究了不同辊径及压下率下该合金轧板的弯曲行为,并对比了异径异步轧制与对称轧制轧板的变形特征及轧辊受力情况。结果显示:异径异步轧制可以得到平直轧板,且能提高轧板的应变及其沿法向分布的均匀性,但并不是所有异速比下的异径异步轧制都能降低轧制力。  相似文献   

5.
采用异速异步轧制技术,对翼缘板钢分别进行累计九道次冷轧,用光学显微镜、电子扫描显微镜观察轧件的显微组织。结果表明:在相同的压下量下,随着异速比增大,晶粒长度和高度的比值也增大,用晶粒长高比值可以在一定程度上反映异步轧制对轧件所受附加剪切变形影响关系。对冷轧后的轧件进行了拉伸和退火实验,结果表明:随着异速比增大,抗拉强度增加,晶粒平均直径变小,异步轧制与同步轧制相比应变储能更高,可以产生更多的位错和亚晶。  相似文献   

6.
介绍了蛇形轧制的实现方式。运用数值模拟方法,在Deform 3D上分析单道次轧制过程中蛇形轧制和对称轧制7075铝合金厚板的流动速度及应力应变分布情况,分析异速比、上下轧辊错位量和压下量对蛇形轧制变形区内轧板等效应变和剪切应变的影响规律。结果表明:蛇形轧制中,由于下辊速度快,轧板下层金属流动比上层快,蛇形轧制中轧板下层等效变形大于上层,且随着异速比的增大,上下层金属变形差距增大;对称轧制中厚板心部的剪切应变几乎为0,蛇形轧制中由于有“搓轧区”的存在,厚板心部的剪切应变远大于对称轧制的,且随着异速比的增加和错位量的增加,轧板心部的剪切变形增大。这种附加的剪切变形有利于使变形向厚板心部渗透,从而改善厚板高向变形的不均匀性。  相似文献   

7.
基于软件MSC.Marc建立了高锰无磁钢在不同变形参数下异步轧制过程的三维有限元模型。利用该模型对异步轧制过程进行了数值模拟,分析了异速比、压下量和初轧温度对轧件平均宽展的影响规律。结果表明:轧件平均宽展随着压下量的增大和初轧温度的升高而增大;随着轧制异速比的增大,平均宽展先减小后增大。在压下量为20%、30%、40%时,平均宽展最小值对应的异速比为1.2,但当压下量增大至50%时,平均宽展最小值偏移到异速比为1.3处。基于以上分析结果,将异速比、压下量和初轧温度对宽展的影响规律引入芝原宽展公式,并对其进行了修正,使用修正后的公式进行了计算,计算结果与模拟结果相关性较好。  相似文献   

8.
高纯铝箔在异步轧制和再结晶过程中取向的演变   总被引:7,自引:0,他引:7  
黄涛  曲家惠  胡卓超  王福  左良 《金属学报》2005,41(9):953-957
采用不同速比的异步轧制技术对99.99%的高纯铝板进行不同形变量的冷轧,并对冷轧样品进行不同温度和时间的再结晶退火.利用X射线衍射技术和TEM观测探讨了异步轧制条件下高纯铝箔中变形织构和再结晶织构的演变.结果表明:高速比的异步轧制(i=1.28)在样品中产生相对较强的旋转立方织构{001}(110).异步轧制后退火的高纯铝箔样品中,立方{001}(100)织构组分的再结晶晶核的形成和长大存在一个临界转变温度,此温度与异步轧制的速比成反比.异步轧制有利于降低高纯铝箔的再结晶温度,这与异步轧制提高高纯铝箔的形变储能有关.异步轧制有利于在低温时形成强的立方{001}(100)织构组分,但此时漫散较大;随着退火温度的升高,漫散范围明显缩至8°-10°.  相似文献   

9.
介绍了龙形轧制方法,运用大变形热力耦合有限元法分析了龙形轧制和对称轧制铝合金厚板变形区内轧件的变形情况,比较了龙形轧制和对称轧制条件下轧板不同位置剪切应变的分布情况,并研究了上下轧辊错位量、异速比、摩擦系数和压下量对轧板心部剪切变形的影响。结果表明:对称轧制中厚板心部的剪切应变几乎为0;龙形轧制中由于有"搓轧区"存在,厚板心部的剪切应变远远大于对称轧制,且心部的剪切应变随着轧辊错位量、异速比、摩擦系数和压下量的增大而增大。为了获得较大的剪切应变同时保证较小的弯曲曲率,在龙形轧制中应合理选择这些工艺参数。  相似文献   

10.
为了研究镁合金经异步轧制后的微观组织及织构演变,使用4种不同异速比对挤压态的Mg-3Zn-2(Ce/La)-1Mn合金进行异步轧制试验。结果表明:相对于初始的挤压态样品,异步轧制后的组织更均匀细小;随着异速比的增大,再结晶晶粒数量增多,第二相破碎,晶粒和第二相粒子的尺寸减小,组织的均匀化程度提高;样品中主要存在两种第二相,即α-Mn相和MgxZny-Mn-(Ce/La)相;锥面滑移及基面滑移在异步轧制过程中扮演着重要的角色,且基面取向出现了从RD向TD的30°~45°偏转,织构逐渐趋于随机化。强剪切应变的引入、锥面滑移以及基极的偏转对织构的随机化具有显著的影响。  相似文献   

11.
异步轧制对奥氏体钢组织和性能的影响(英文)   总被引:1,自引:0,他引:1  
分别采用异步轧制和同步轧制工艺制备具有细晶组织的钢材。异步轧制通过采用不同直径的轧辊来实现,轧辊直径比分别为1.00、1.05和1.11,轧制温度在900~1100°C,轧制变形量为15%、30%和60%。结果表明,与同步轧制相比,异步轧制能够在轧制件中间层获得高体积分数的再结晶晶粒和更小的晶粒尺寸。在轧辊直径比为1.05时能够得到最高的再结晶程度和最小的晶粒尺寸。在较高的温度和低的变形量条件下,晶粒明显长大,其机制为传统的动态再结晶,伴随有孪晶发生。在900°C下,即使变形量达到60%,异步轧制也不能导致动态再结晶发生,而同步轧制却可以。除了在900°C和变形量为60%以外,异步轧制的压力要比同步轧制的小。轧制压力随着轧制温度的降低和变形量的升高而增加。  相似文献   

12.
为确定异步等效应变速率的计算模型,从理论上推导了压缩应变速率计算公式,结合压缩应变速率与剪切应变速率之间的关系,最终确定了等效应变速率的计算公式。利用轧制退火试验和JMAK方程,对该公式在轧制试验中应用的合理性进行了验证,并探讨了异速比和压下率对轧制等效应变速率的影响。结果表明,该公式对同步和异步轧制等效应变速率计算都是合理的;压下率相同,异速比为某一值时等效应变速率存在最小值;异速比相同,压下率与等效应变速率呈正相关。  相似文献   

13.
采用不同速比对高纯铝板进行异步冷轧,并将冷轧样品进行不同温度和时间的再结晶退火,研究异步轧制速比对高纯铝箔织构转变的影响。结果表明:高速比的异步轧制在样品中产生较强的旋转立方织构和{102}〈uvw〉织构,异步轧制退火后的高纯铝箔样品具有很强的立方织构{001}〈100〉。立方织构的体积分数与速比和温度有关:当速比为1.06时,温度升至300℃开始出现立方织构;当速比为1.17时,温度升到200℃就出现立方织构。立方织构组分的形成存在一个阈值温度,此温度与异步轧制的速比成反比,随着速比的增加,阈值温度逐渐降低,这与异步轧制提高高纯铝箔的形变储能有关。异步轧制有利于在低温时形成较强的立方{001}〈100〉织构。  相似文献   

14.
采用异步轧制工艺进行了铜铝薄带的复合,并对复合带进行了退火处理,利用金相显微镜、扫描电镜和拉伸试验机进行了复合带组织的观察和性能的测定.结果表明,异步轧制相比同步轧制的界面波浪状形貌明显减少,界面更加平整;在相同的压下率下,异步轧制的轧制力要小于同步轧制的轧制力,使轧制的稳定性和精度得到了提高,有益于提高界面剥离强度;异步速比与复合带界面的剥离强度呈抛物线关系,异速比为1.25界面的剥离强度最大;异步速比增加,铜/铝复合带Cu/Al厚度比增加.所得结果在铜铝薄带轧制复合领域的研究有重要意义.  相似文献   

15.
对不同异步速比条件下铜/铝复合板界面结合强度和剥离形貌进行了研究,分析了轧制变形区界面正应力、剪切应力以及等效应变对复合板结合强度的影响机制。结果表明:随异步速比的增加,铜/铝复合板界面的剥离强度先增大后减小,且在异步速比为1. 15时达到最大值34. 2 N·mm-1。从剥离形貌来看,异步速比为1. 15时复合板剥离界面上黏着的铝脊数量和面积达到最大,且异步速比大于1. 15时,剥离面黏着的铝屑明显增加。模拟结果分析发现:随着异步速比的增加,界面处的等效应变和剪切应力均逐渐增大,可有效促进金属间的结合效果。当异步速比大于1. 15时,轧制变形区出口侧的剪切应力急剧上升,对结合界面造成一定的破坏作用,因此复合板的剥离强度随异步速比的增加,呈先上升后迅速下降的变化趋势。  相似文献   

16.
本文对边部预制凸度的AZ31镁合金板材进行异步轧制数值模拟,分析该工艺对边部损伤的抑制效应及轧制力的变化规律。在上辊与下辊速度比分别为1、1.1条件下,对温度为400℃的平板和边部预制凸度AZ31镁合金板材进行轧制。结果表明,平板轧制时板材边部受到轧制方向较大拉应力作用,异速比的增大使得拉应力峰值减小,沿板宽最大损伤值由0.281增大至0.289;同等条件下,边部预制凸度板材轧制时边部轧制方向拉应力峰值明显减小,异速比对拉应力峰值基本没有影响,沿板宽最大损伤值由0.187增大至0.197。边部预制凸度导致轧制力增大,异步轧制又能够明显降低轧制力,因此异步凸度轧制能够有效控制损伤及弱化轧制力。  相似文献   

17.
传统4层对称轧制限于设备能力无法轧制大厚度复合板,直接进行双层轧制实验成本太高。文中用大型商业动力学软件ANSYS/LS-DYNA模拟不锈钢/碳钢复合板异步轧制过程,确定压下率为15%时,异速比为1.08时,平直度可以达到30I以下。最终,根据这个模拟结果,指导不锈钢/碳钢复合板的轧制试验,可以得到不平度较好地轧制结果。用有限元模拟不锈钢/碳钢复合板非对称异步轧制结果,对类似的复合板轧制具有参考作用。  相似文献   

18.
简述同步和异步轧制工艺的特点,对比了不同轧制工艺对高压阳极铝箔冷变形及再结晶织构的影响.结果表明,同步、异步轧制铝箔退火后都可得到高的立方织构含量,但后者的压力小,生产成本低,采用异步轧制生产高压阳极铝箔,可以调整传统的高压阳极铝箔生产工艺,降低生产成本.  相似文献   

19.
采用不同异速比对6061铝合金进行了异步冷轧,研究了不同异速比下累积的不均匀变形对其组织和性能的影响。结果表明:随着异速比(1.14~1.39)的增大,6061铝合金板材的晶粒逐渐细化,抗拉强度和伸长率有所增加;当压下量为50%、异速比为1.39时,合金的晶粒最均匀细小,平均晶粒尺寸约为77.6μm,抗拉强度为380 MPa,伸长率达到32.5%。  相似文献   

20.
针对镁/铝板材轧制复合在轧后容易出现弯曲问题,提出了蛇形轧制复合工艺,以达到降低轧后弯曲曲率并提高界面结合强度的目的。利用ANSYS LS-DYNA有限元软件,研究了蛇形轧制复合过程中不同错位量、异速比、压下量、层厚比及轧制温度对轧后复合板的弯曲曲率的影响规律,并开展轧制复合实验,验证了有限元计算结果的准确性。结果表明,与异步轧制相比,蛇形轧制可有效降低轧后复合板弯曲曲率。相同轧制条件下,异步轧制轧后弯曲曲率随着异速比的增大而增大,随着压下量及层厚比的增大而减小。蛇形轧制错位量可对轧后弯曲抑制产生明显的效果,在一定范围内,复合板的弯曲曲率随错位量的增大而减小。当初始板厚为50 mm、层厚比为2:3、压下量为30 mm、轧制温度为400℃、异速比为1.05和错位量为30 mm时,轧后复合板接近平直。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号