首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
齿轮疲劳强度与裂纹萌生区域的预测研究   总被引:6,自引:0,他引:6  
以经过表面强化后的国产某轿车变速箱齿轮为例,根据齿根附近沿深度的残余应力和硬度的分布对单齿弯曲疲劳强度和疲劳裂纹萌生区域的预测进行了分析和试验验证.通过强度和硬度之间的转换关系以及疲劳强度与残余应力的作用关系,得到了齿根附近沿深度的弯曲疲劳极限分布,齿根次表面下0.25~0.45mm之间的区域是疲劳危险区.齿轮表面强化的结果使得齿轮弯曲疲劳裂纹源从表面转入到次表面,并初步得到了微观验证.研究结果说明了基于残余应力和硬度可以进行疲劳强度和疲劳裂纹萌生区域的预测.  相似文献   

2.
李平平  陆菁  林栋 《失效分析与预防》2020,15(3):191-195, 206
S40C钢制齿轮服役一段时间后,单个齿面出现裂纹状缺陷。采用宏微观分析、金相检验、显微硬度测试等方法,对该齿轮缺陷产生的原因进行分析。结果表明:齿面裂纹状缺陷为接触疲劳所致,造成局部接触疲劳裂纹产生的根源是齿面存在磨削烧伤,显著降低齿面硬度,改变齿面强度梯度分布,在循环啮合作用下出现接触疲劳开裂。进一步地,对感应淬火齿轮齿面硬度降低的影响因素进行详尽的阐述,并结合不同啮合状态下齿轮强度曲线和剪切应力曲线之间的相互关系,论述常见的齿轮剥落现象及失效机理。  相似文献   

3.
硅铝合金柴油机机体紧固面微动疲劳研究   总被引:1,自引:1,他引:0  
张翼  李杰  蔡强  葛尧 《表面技术》2018,47(1):66-71
目的针对柴油机机体和主轴承盖紧固面之间发生的微动疲劳失效现象,探讨微动状态下柴油机硅铝合金机体的裂纹萌生特性及寿命评价方法。方法建立机体紧固面组合结构有限元模型,计算机体紧固面上的应力/应变历史数据,在此基础上分析机体紧固面的接触状态,探讨摩擦系数及摩擦功对微动疲劳特性的影响。采用多轴疲劳参数(CCB、F、SSI、Ruiz参数)预测了机体微动裂纹萌生位置,对所用参数进行修正,建立适用于机体紧固面的微动疲劳寿命预测模型。结果预测结果与实验值对比可知,F、SSI参数与实验结果差异较大,CCB和Ruiz参数的寿命预测结果与实验值接近,在2.3倍公差带因子范围内。但由于CCB参数预测的裂纹萌生位置和机体实际断裂位置不符,所以不能用于机体微动疲劳寿命预测。结论在接触状态突变的区域容易萌生微裂纹,适当增大摩擦系数或者降低摩擦功可以抑制机体的微动疲劳损伤。Ruiz参数预测的机体微动疲劳寿命与实验值最为吻合,用Ruiz参数评估柴油机硅铝合金机体的微动疲劳寿命可以将误差控制在2.3倍公差带因子范围内。  相似文献   

4.
风电场1.5 MW风电机组齿轮箱在运行中出现故障,经检查发现中速轴小齿轮出现断齿现象。采用宏观观察、微观观察、并结合相关理化性能测试,综合分析得出齿轮的失效原因。结果表明,风电齿轮箱中速轴小齿轮断裂性质为疲劳断裂,在断口上观察到清晰的疲劳弧线,裂纹源萌生于齿面接触疲劳产生的蚀坑中,而导致齿面严重接触疲劳的原因是偏载。  相似文献   

5.
对某烟气轮机的动叶片榫齿接触痕迹特征、组织和受力进行综合分析.结果表明,榫齿裂纹为起始应力较大的疲劳裂纹,受力最大的第三榫齿和榫槽接触不均匀,局部磨损严重导致发生磨蚀萌生裂纹.榫齿各部位的混晶以及晶界连续粗大碳化物膜加速了裂纹的萌生与扩展.另外,材料在高温燃气环境下易发生腐蚀,也是导致榫齿失效的诱发因素.  相似文献   

6.
基于齿轮疲劳失效理论,利用Workbench和nCode方法建立齿轮CAE模型,完成齿轮接触动力学和疲劳寿命预测分析。以疲劳耐久性主要影响因素为表征参量,对齿轮副进行静态和瞬态特性分析。在给定不同载荷谱的情况下,基于材料 S-N 曲线和Miner线性损伤累计理论,利用疲劳分析软件nCode Design-Life对齿轮副进行疲劳可靠性分析,得出齿轮接触区域的疲劳结果云图和各节点的疲劳寿命。结果表明:齿轮传动静载条件下的最大接触应力和最小疲劳寿命的区域相同;在动载条件下,最小疲劳寿命出现在齿面分度圆与齿轮端面的过渡区域;在静载、动载条件下,从动轮扭矩的变化对齿轮传动的疲劳寿命影响较大。研究结果可为齿轮抗疲劳优化和加速试验方法的设计提供参考。  相似文献   

7.
KX84系列牙轮钻头工作一段时间后,因牙爪大跑道失效而报废。通过赫兹应力分析、显微硬度测试、剖面金相观察和断口分析,对牙轮钻头牙爪大跑道的失效形式进行分析,并对裂纹萌生的深度进行预测。结果表明:牙爪大跑道失效形式为接触疲劳。当轴压低于6.895 MPa时,45°切应力τzy45°与最大水平切应力τ0max低于疲劳极限σ-1,疲劳裂纹不会萌生;当轴压超过6.895 MPa,疲劳裂纹开始萌生;当轴压达到13.79 MPa时,可以利用接触面半宽b对裂纹深度进行预测。KX84-250和KX84-310牙轮钻头的牙爪大跑道裂纹预测深度为0.27、0.34 mm,实际深度为0.28、0.38 mm。为了提高牙轮钻头的钻孔深度,牙轮钻头在安装时注意避免极端情况的出现,同时控制轴压,避免疲劳裂纹的萌生。  相似文献   

8.
研究了带环状预裂纹不锈钢圆棒试样在循环扭转载荷下、门槛值附近的疲劳裂纹扩展行为,用应力强度因子表征了裂纹扩展开始的门槛值.随着裂纹的扩展,裂纹扩展速率由于裂纹面的滑移接触而减小.通过外插裂纹扩展速率与裂纹长度之间的关系,可近似得到裂纹长度为零时无裂纹面滑移接触影响的裂纹扩展速率.施加的应力强度因子范围可分解为推动裂纹扩展的有效值和由于裂纹面的滑移接触而屏蔽掉的两部分.预测了疲劳裂纹的萌生和断裂极限,预测值和实验值相当一致.  相似文献   

9.
齿轮修形是改善轮齿接触疲劳寿命的有效途径。将一种新的修形曲线——相切抛物线,应用于直齿圆柱齿轮,通过标准FZG试验台测试齿轮修形前后的接触疲劳寿命,以及不同工况下齿轮的疲劳寿命。试验结果表明,齿向修形后齿轮接触疲劳寿命有较大幅度的提升;洁净润滑油润滑下的齿轮接触疲劳寿命比污染润滑油润滑下的疲劳寿命高3倍;齿轮油中的极压添加剂可以显著提高接触疲劳寿命,未添加极压剂的齿轮表面较早发生齿面胶合失效。  相似文献   

10.
针对12Cr2Ni4钢齿轮在工作过程中发生断齿及齿面损伤的问题,通过断口分析、能谱分析、化学成分分析、渗碳淬火硬化层检测,对齿轮的断裂失效原因进行了分析。结果表明,齿轮断裂性质为疲劳断裂,因残留加工刀痕产生应力集中、有效硬化层局部过浅以及过渡区残余应力大是齿轮断裂失效的主要原因。疲劳裂纹首先于齿轮节圆附近残留加工刀痕较深处萌生,随后逐渐扩展直至断裂。据此提出了改进措施。  相似文献   

11.
齿面凹坑是常见的齿轮缺陷之一,在轮船、矿业机械、风电齿轮等大型重载齿轮传动机构中,齿轮更换拆卸极为不便,为避免齿轮发生严重失效造成的重大损失,需要准确判断齿轮的磨损特征和预测故障出现的时间和位置,探究齿面坑状缺陷对齿轮磨损进程的影响尤为必要。以齿面单坑缺陷齿轮的啮合历程为研究对象,采用控制变量的方法进行齿轮磨损特征对比。通过搭建的力系闭式齿轮试验台进行重载试验,利用铁谱分析技术和油样分析技术对磨损粒子作定量、定性分析,结合有限元分析和和齿面磨痕扫描电镜图片探究单坑缺陷下斜齿轮磨损演变与齿轮啮合状态的映射机制。研究结果表明:凹坑打在承载区,斜齿轮沿接触线方向的应力分布不均匀,凹坑周边区域存在应力集中现象;坑状缺陷改变了齿轮的啮合状态,缺陷轮齿齿根应力值明显大于正常轮齿,使得坑状缺陷的轮齿齿面抗磨损能力提高,但轮齿刚度降低,尤其进入剧烈磨损的后期,磨粒数量快速上升,并伴随齿面严重的剥落和塑性变形,加速轮齿疲劳断裂。  相似文献   

12.
窦鹏  李友国  梁开明 《金属学报》2005,41(2):140-144
研究了中碳贝氏体支承辊钢在低应力、水润滑和牵引滚动条件下的接触疲劳裂纹萌生与扩展特征,发现了表面起源的垂直短裂纹和棘齿短裂纹.疲劳10^4cyc时,垂直短裂纹就在接触表面大量出现,且在萌生后立即进行高速初始扩展,其后绝大多数停止长大;棘齿短裂纹出现较晚.两种短裂纹长大到一定深度时均停止扩展.在疲劳失效寿命的70%-80%时,垂直短裂纹恢复扩展,并随即加速长大.几乎同时,两种短裂纹在亚表层以转折的方式重新扩展.在表面损伤出现之前,两种短裂纹的萌生和扩展行为始终局限在近表面薄层内.  相似文献   

13.
碳氮共渗工艺应用广泛,但对碳氮共渗后零部件的滚动接触疲劳失效机理研究较少。采用气体碳氮共渗对马氏体轴承钢进行表面改性处理,对碳氮共渗试样进行滚动接触疲劳试验,研究碳氮共渗对轴承钢滚动接触疲劳性能的影响及其失效机理。研究结果表明:碳氮共渗试样表面硬度、残余应力和残余奥氏体含量显著提高,使得其接触疲劳寿命明显高于常规试样。疲劳裂纹萌生于表面和亚表面,其中大量表面平行裂纹主要由表面白色蚀刻层硬度梯度变化而导致,表面材料受到严重微观塑性变形产生晶粒细化;亚表面裂纹萌生位置受最大应力的分布和渗层厚度的影响。表面和亚表面疲劳裂纹的扩展和连接最终导致碳氮共渗试样出现浅层剥落和分层剥落的失效形貌。  相似文献   

14.
TC17合金超高周疲劳裂纹萌生机理   总被引:1,自引:0,他引:1  
通过实验研究了2种频率(110 Hz和20 k Hz)循环载荷作用下航空发动机叶片材料TC17合金的超高周疲劳失效行为,分析了不同失效形式下的裂纹萌生机理。结果表明,TC17合金在2种实验载荷频率下均存在表面和内部萌生裂纹诱发疲劳失效2种失效形式,表面萌生裂纹诱发的疲劳失效主要是由加工缺陷和循环载荷作用下试样表面滑移处应力集中引起的横向裂纹所致,内部萌生裂纹诱发的疲劳失效是由循环载荷作用下材料初生α相的滑移断裂所致。失效机理的不同使得材料的应力-疲劳寿命(S-N)曲线呈双线性,载荷频率对TC17合金的裂纹萌生形式和萌生机理的影响不显著。建立了基于薄弱取向晶粒区域尺寸的疲劳强度预测模型,模型预测值与实验值吻合较好。  相似文献   

15.
TA1钛合金自冲铆接接头疲劳性能及失效机理分析   总被引:1,自引:0,他引:1       下载免费PDF全文
采用轴向加载的形式对TA1钛合金自冲铆接试样进行疲劳试验,分析了不同因素下试样的疲劳强度变化规律;通过扫描电镜对试样失效断口和微动磨损进行分析,研究试样的失效机理. 结果表明,在同种铆接因素下,试样疲劳强度随应力比的增大而增大,随最大载荷值的增加而下降. 通过断口分析发现,铆钉断裂失效时,疲劳裂纹主要产生在钉胫外侧;基板断裂失效时,疲劳裂纹首先萌生在铆钉胫尾部与下板接触区域. 基板与铆钉的微动磨损在某种情况下存在竞争机制,当铆钉微裂纹扩展速率大于基板时表现为铆钉失效,反之为基板失效.  相似文献   

16.
某风场1.5 MW风电机组齿轮箱中速轴小齿轮失效.该齿轮箱设计寿命20 a,实际使用了5 a.齿轮的材质是20CrNiMo,齿面经过渗碳淬火.采用宏观观察,微观观察和断口分析并结合其它理化测试,分析了小齿轮失效的原因.现场宏观观察发现,大部分轮齿相对完好,只有两支轮齿失效,其中一支齿面剥落,另一支齿面硬化层开裂.经分析,齿面剥落和齿面开裂的原因相同.导致齿轮失效的原因是:齿面粗糙度较大,较深的加工刀痕在异常冲击载荷的作用下造成齿面开裂,随后在循环工作载荷的作用下,萌生了疲劳裂纹并不断扩展,最终导致齿面硬化层脱落.建议提高齿轮表面加工质量,降低表面粗糙度,同时改进齿轮箱制动技术,避免异常载荷冲击造成齿面过载.  相似文献   

17.
吴钢 《热处理》2002,17(4):12-16
提出了采用轴向分齿扫描法进行齿轮激光热处理的工艺,并对试验结果进行了理论分析,采用该工艺,可得到均匀的齿面硬度和较为理想的齿面硬化层分布状态,热处理变形小,可保证6-8级精度齿轮的原有精度等级,齿面可获得较大的残余压应力,有利于提高齿轮疲劳寿命。  相似文献   

18.
齿轮疲劳失效分析与工艺参数优化   总被引:1,自引:0,他引:1       下载免费PDF全文
齿轮传动在航空、机械、冶金、交通运输等领域中得到了广泛的应用,齿轮构件的疲劳失效会导致整个传动系统的失效。为了确保齿轮运行的平稳性和可靠性,对20CrMnTi渗碳齿轮的工艺参数进行优化。先对齿轮常见的齿根弯曲疲劳和齿面接触疲劳进行详细的失效机理分析,并基于此利用田口方法设计齿轮疲劳正交试验,然后根据设计参数进行齿轮疲劳试验,利用Minitab软件对试验数据进行分析。结果表明:影响齿轮疲劳性能的因素等级排序分别是渗碳层深度、心部硬度和表面粗糙度,且渗碳层深度的影响程度远大于后两者。  相似文献   

19.
为提高叶轮的使用寿命,对叶片的抗疲劳性能提出了更高的要求,激光冲击强化(LSP)处理是提高材料抗疲劳性能的重要途径。针对FV520B钢棒状试样进行LSP试验和不同应变幅值下的单轴低周疲劳试验,并进行疲劳寿命预测。结果表明,LSP后试样的表面硬度由330 HV提升至490 HV,且LSP后试样表面产生约-90 MPa的残余压应力。相比于未冲击试样,LSP试样的疲劳寿命均有所提高,±0.5%应变幅值下试样的疲劳寿命提高132.2%。SEM结果表明,LSP后试样表面产生的残余压应力抑制了疲劳裂纹的萌生和扩展,裂纹萌生位置由试样表面向次表面转移,且疲劳条纹的间距和韧窝尺寸减小,从而延长了试样的疲劳寿命。采用Manson-Coffin方程针对光滑试样和LSP试样进行疲劳寿命预测,总的来说,对于光滑试样预测结果与试验结果吻合较好;对于LSP试样,预测的疲劳寿命偏保守。考虑残余压应力的影响针对Manson-Coffin方程进行修正,得到了较好的预测结果。研究结果可为FV520B材料LSP处理工艺和疲劳失效研究提供理论依据。  相似文献   

20.
电站中压主汽阀阀壳低周疲劳寿命研究   总被引:1,自引:0,他引:1  
采用有限元方法(FEM),计算分析了电站200MW汽轮机中压主汽阀阀壳在冷启、停机、强热启动、极热启动以及事故等工况下的温度场和应力场,得出了阀壳裂纹区各工况下温度场和应力场的变化规律,提出了内壁裂纹区的周向应力是疲劳寿命计算的主要参考量.绘制关键节点周向应力块谱图,应用局部应力应变法估算阀壳的低周疲劳寿命,并将计算结果与阀壳失效调查统计结果进行了比较.研究表明:计算的周向应力极值区与实际调查发现的裂纹萌生区相吻合,进一步预测的裂纹萌生寿命与实际调查统计结果也基本相符;事故工况为裂纹萌生的主导因素,其导致的疲劳损伤比达到12.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号