首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 109 毫秒
1.
砂轮表面形貌对磨削加工过程和已加工表面质量有着极大影响,但由于砂轮表面磨粒分布的随机性,描述砂轮表面形貌非常困难。通过对砂轮表面进行采样和数据处理,运用统计学理论和Johnson变换方法获得了非正态分布砂轮表面形貌的数学描述方程,在此基础上对砂轮表面形貌进行仿真。选用伯明翰14参数集的部分参数作为评价标准,对测量的砂轮表面形貌和仿真形貌进行比较,结果显示:二者具有很好的一致性,6个参数的平均相对误差仅为2.97%。结果充分证明了该仿真方法的正确性。   相似文献   

2.
基于支持向量机的铝基碳化硅磨削表面质量预测   总被引:1,自引:0,他引:1  
目的针对传统粗糙度指标评价具有凹坑缺陷的铝基碳化硅磨削表面质量的局限性,提出基于三维形貌的改进表面粗糙度评价指标及其预测模型。方法基于磨削表面三维形貌构建等高线图,获取等高线轮廓间面积占比与轮廓高度的关系曲线,提出表面三维形貌体积相对于采样区域面积的算术平均偏差和凹坑最大偏离高度评价指标,用于表征包含凹坑缺陷的磨削表面质量。基于支持向量机建立和优化三维形貌算术平均偏差和凹坑最大偏离高度的预测模型,并分析磨削工艺参数对评价指标的影响规律。结果三维形貌算术平均偏差和凹坑最大偏离高度评价指标包含凹坑缺陷等更多表面特征,评价指标预测值与实验值误差在5%以内,且随着砂轮转速的增大而减小,随着进给速度与磨削深度的增大而增大。结论采用三维形貌算术平均偏差和凹坑最大偏离高度评价包含凹坑缺陷的磨削表面质量是合理的,评价指标测量和确定方法是可行和有效的。基于支持向量机的评价指标预测方法具有正确性,为铝基碳化硅磨削表面质量评价和使用性能研究打下了基础。  相似文献   

3.
本文阐述了激光技术在磨削加工不同方面的应用情况。首先介绍了利用激光对工件表面进行改性处理以改善工件磨削加工性能以及激光辅助磨削硬脆材料的原理和方法。然后通过试验研究,着重阐述了激光在砂轮修锐以及检测砂轮表面形貌两方面的应用。试验结果表明,利用激光扫描方法可快速精确地测量砂轮表面的原始三维形貌,对砂轮工件性能作出客观评定,利用该方法可望实现砂轮形貌的在线检测;利用激光修锐砂轮,不仅可大大降低砂轮损耗,并且能精确控制修税效果,因而是一种很有前途的砂轮修锐方法。  相似文献   

4.
针对圆刀片磨削加工后表面质量不均匀的现象,研究了硬质合金圆刀片刃面磨削加工工艺中砂轮倾角和砂轮粒度对刃面质量影响。通过运动学分析,建立了切削表面纹理与切削工艺参数的数学关联模型,揭示切削参数对切削模式、表面纹理的影响规律。利用光学三维形貌仪测量了不同位置的刃面微结构及面粗糙度,对比了双区域磨削、单区域磨削和砂轮粒度对表面形貌的影响。结果表明,单区域磨削的面粗糙度具有更好一致性,多区域磨削具有更低的面粗糙度,对于精加工选用单区域磨削可有效也提高圆刀片表面质量。  相似文献   

5.
为保证建立有效的砂轮修整在线监测系统,以达到高效节约地修整砂轮的效果,文章提出了利用砂轮表面三维形貌评价、验证砂轮修整在线监测系统适用性的方法。建立了氧化铝砂轮修整在线监测系统,系统经过学习可用于修整监测,采用激光位移传感器测量修整前后砂轮表面形貌,选用磨粒密度、锋利程度和表面孔隙率等参数表征砂轮表面形貌。结果表明:相同的修整参数下,监测与学习修整所得砂轮表面形貌的特征值差异小于5%;不同修整参数下,修整前后各特征值平均变化范围为8.65%~16.27%,从而表明所建立的砂轮修整在线监测系统的良好适用性。  相似文献   

6.
为了更加准确地研究磨削加工机理及预测磨削结果,测量并重构单层钎焊CBN砂轮的表面形貌,并以此为基础研究不同工艺参数下的单颗磨粒切厚分布特征。结果表明:试验砂轮表面磨粒高度的分布形态并不符合正态分布特征,需要采用Johnson变换重构整个砂轮表面的磨粒高度分布特征;单颗磨粒切厚分布特征受磨削参数和砂轮磨损的影响较大。   相似文献   

7.
砂轮表面形貌特征是砂轮磨削性能的主要决定因素。准确地检测砂轮表面形貌不仅有助于进一步认识磨削机理,更是砂轮表面形貌建模和磨削仿真不可或缺的先决条件。本文中总结了典型的砂轮表面形貌检测方法,概述了各检测方法的基本原理,并分析了它们的优势和不足。最后,分析了国内外砂轮表面形貌检测方法的发展现状,指出了现阶段存在的问题,展望了砂轮表面形貌检测方法的发展前景。   相似文献   

8.
目的 减少磨削镍基合金GH4169过程中砂轮磨损和堵塞现象,提高工件表面质量.方法 采用WA和SG砂轮磨削镍基合金GH4169,通过观察磨削前后砂轮表面微观形貌,研究两种砂轮表面材料粘附、堵塞以及磨粒破碎等主要磨损机制.从磨削力、工件表面形貌、磨削比能3个方面评价两种砂轮的磨削性能,并探究磨削参数对砂轮磨削力、工件表面形貌、磨削比能的影响规律.结果 在去除相同体积材料时,SG砂轮的磨削力较小,所消耗的能量较WA砂轮低21.5%,SG砂轮所加工工件表面的粗糙度明显低于WA砂轮所加工工件表面的粗糙度,两者表面粗糙度差值均在1μm以上.SG砂轮表面材料粘附现象较轻,WA砂轮表面出现了大面积的材料粘附,造成了砂轮堵塞.结论 SG磨粒因内部致密的微小晶粒所决定的微破碎机制,使SG砂轮在磨削镍基合金GH4169过程中保持了锋利的磨削刃,减少了砂轮表面的材料粘附,同时也获得了良好的工件表面质量.另外,SG磨粒较WA磨粒具有更佳的力学性能,使其在去除相同体积材料时所消耗的能量更少.  相似文献   

9.
张银霞  韩程宇  杨鑫  王栋  刘治华 《表面技术》2019,48(10):342-348
目的 对不同磨削工艺参数下的平面磨削力进行预测,对磨削机理进行研究,进而控制磨削加工质量。方法 考虑CBN砂轮表面磨粒形状的多样性、姿态的多样性和空间分布的随机性,建立CBN砂轮模型,对GCr15材料模型进行有限元砂轮磨削仿真。同时使用CBN砂轮,采用不同的工件进给速度对GCr15进行单因素平面磨削实验,使用三坐标测力仪测量不同磨削参数下的磨削力。结果 建立的仿真砂轮模型的表面形貌与真实砂轮接近,仿真砂轮上的磨粒出刃高度均服从正态分布,与实际砂轮一致。对比随机多面体磨粒模型和真实CBN磨粒照片,两者形貌相似。磨削力实验和仿真结果表明,工件进给速度由3 m/min增大到18 m/min时,磨削力逐渐增大,仿真所得法向磨削力最大误差远小于切向磨削力。结论 实验结果与仿真结果具有一致性,证明了砂轮磨削有限元仿真模型可用于磨削力预测。因为仿真中无法考虑实际砂轮尺寸和砂轮表面结合剂对磨削的影响,结果具有一定误差,仿真的准确性有待进一步提高。研究结果为使用有限元方法研究磨削机理和控制磨削加工质量提供了思路。  相似文献   

10.
为了探究超高速磨削条件下GCr15轴承钢表面粗糙度与烧伤的关系,进行了不同砂轮速度、工件速度下GCr15轴承钢超高速正交磨削试验,并测量了表面粗糙度,试验结果表明:GCr15轴承钢加工表面都出现了不同程度的烧伤,当砂轮速度为150~160m/s,工件速度为3~5m/min时烧伤最为严重。且在一定范围内,砂轮速度增大、工件速度增大都会造成粗糙度增加。通过烧伤表面三维形貌分析,揭示了烧伤会增加工件表面粗糙度的原理,并分析出了合适的磨削加工参数,为超高速磨削GCr15轴承钢时避免发生磨削表面烧伤提供了参考依据。  相似文献   

11.
为了实现大面积砂轮表面形貌的计算机视觉检测,本文利用视频系统从两个不同视角采集钎焊金刚石砂轮表面形貌,通过特征配准法找出两幅图像的特征点和匹配点,然后对图像进行拼接融合,最终得到拼接后的目标图像,实现了砂轮表面三维形貌图的有效重构。  相似文献   

12.
Simulation of diamond-ground surfaces   总被引:2,自引:0,他引:2  
State-of-the-art models available for predicting the characteristics of diamond-ground surfaces entail digitization of wheel topography which limits their practical utility. This paper presents a geometric simulation of surface generation in diamond grinding, that utilizes wheel topography data obtained from simulated three-dimensional structure of the diamond grinding wheel. Simulation results are validated by surface grinding experiments on a variety of materials that exhibit different material removal mechanisms, with the roughness parameters Ra and Rt, the autocorrelation function and the fractal dimension as the comparison indices. A parametric study on the effect of various grinding parameters on surface finish is also reported, with particular emphasis on identifying and minimizing process-inherent variability.  相似文献   

13.
Grinding processes are often used for final finishing of components because of their ability to satisfy stringent requirements of surface roughness and dimensional tolerance. Surface topography generated during grinding depends upon many parameters like wheel parameters, wheel velocity, downfeed, grit density etc. and it also depends upon the type of grinding procedures (viz. plunge grinding, traverse grinding, helical grinding, touch dressing etc.) employed. Therefore, a correct examination of the parameters and type of process employed to carry out grinding are necessary. This paper is an attempt to develop the relation between the different grinding parameters and the grinding procedures like plunge, traverse and helical superabrasive grinding with touch dressing and the average surface roughness. For this purpose, a numerical simulation technique has been implemented to generate the grinding wheel topography. The ground workpiece surface has also been generated by simulating removal of work material depending upon the trajectory of the abrasive grits on the grinding wheel without taking rubbing and ploughing into consideration.  相似文献   

14.
This paper is in three parts describing the analysis and simulation of the grinding process. This first part is concerned with the generation of the wheel surface by single point diamond dressing. In grinding, the grinding wheel has to be dressed periodically to restore wheel form and cutting efficiency. Understanding the process of generating the grinding wheel surface is important for the control of the grinding process. Generation of the wheel surface is simulated as a single diamond dressing process on a computer generated wheel. The wheel is simulated by grains randomly spaced in the wheel volume. The topography of the wheel cutting surface is generated by simulating the action of an ideal dressing tool as it dresses the wheel. The simulation of the wheel topography takes account of the motion of the dressing tool, grain size, grain spacing, grain fracture and grain break-out. The simulated cutting surface is used for further simulations of grinding. The simulation of grinding using the simulated grinding wheel surface is described in Sections 2 and 3 where a comparison is made of results predicted from simulation with results obtained from experiments. By matching simulated and experimental results, it is possible to explain the relative importance of dressing and grinding parameters.  相似文献   

15.
Most of the reported studies on the optimization of grinding parameters do not consider the evolution of the surface topography of grinding wheels, and the established empirical models will no longer apply when the surface conditions of the grinding wheel changes. In this paper, an integrated model based on the surface topography of grinding wheel is established. The grinding process of cemented carbide is simulated using the established model, and the simulation results are analyzed to obtain the surface roughness model and the specific grinding energy model based on the undeformed chip thickness distribution. Subsequently, the grinding constraint models are defined according to the two grinding constraints—surface roughness and specific grinding energy. Through inversion analysis, the maximum material removal rate of the given grinding wheel surface conditions satisfying the defined grinding constraints are obtained, and the influence rules of the grinding wheel surface conditions on the maximum material removal rate are analyzed. Then the grinding wheel surface conditions are adjusted by changing the radial dressed height of the grinding wheel and the arrangement distance of the grains in wheel circumferential direction to improve the maximum material removal rate of the grinding wheel. Finally, the optimization results are verified through grinding tests of cemented carbide.  相似文献   

16.
以18CrNiMo7-6齿轮钢为试验材料,采用正交试验法,研究高速外圆磨削加工中砂轮线速度、工件转速、砂轮径向进给速度和砂轮粒度等工艺参数对工件三维表面粗糙度幅度参数Sa、Sku和Ssk等工艺指标的影响。运用灰色关联分析方法对试验结果进行分析研究,将多项工艺指标的优化问题转化为单一目标灰关联度优化,以正交试验极差分析结果,得出最优工艺参数组合,即砂轮线速度90 m/s、工件转速90 rpm、砂轮径向进给速度0.1 mm/min、砂轮粒度W20。经过试验验证,该工艺参数组合能够有效获得更理想的表面质量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号