首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
采用不同的焊接工艺参数,对GH4169镍基高温合金薄板进行MIG焊接正交试验。通过金相试验,观察镍基高温合金焊接接头的显微组织,可以划分为焊缝中心等轴晶区、焊缝边缘柱状晶区、热影响区和母材组织。利用室温拉伸和显微硬度试验,测定镍基高温合金焊接接头的抗拉强度、断后伸长率与显微硬度等力学性能,并与母材的力学性能进行比较。使用极差分析法,研究焊接电流、电弧电压与焊接速度对接头力学性能的影响规律,并获得了优化的焊接工艺参数。  相似文献   

2.
PM-TZM钼合金电子束焊接特性   总被引:1,自引:1,他引:0       下载免费PDF全文
为研究PM-TZM钼合金电子束焊接特性,对其进行了电子束焊接试验,分别对接头显微组织及力学性能进行了分析. 结果表明,PM-TZM钼合金电子束焊缝呈“钉状”几何特征,熔合线附近有链状气孔出现. 焊缝区由粗大的等轴晶及柱状晶组成,热影响区晶粒相比于母材明显长大. 接头各区域硬度值不同,焊缝区硬度与母材相当,硬度最低值出现在两侧热影响区.PM-TZM合金电子束焊接接头有较大的性能损失. 接头室温最高抗拉强度378 MPa,为母材抗拉强度的47%,1 000℃抗拉强度168 MPa. 接头拉伸断裂均发生于焊缝区,呈典型的脆性解理断裂特征.  相似文献   

3.
采用真空电子束焊接实现了船用厚板铜镍合金的优质可靠连接,焊后对接头组织、显微硬度、拉伸性能和冲击性能进行了测试研究。研究结果表明,焊缝为粗大的枝晶组织,热影响区为晶粒大小不等的孪晶组织,靠近焊缝处晶粒有异常长大;接头显微硬度最高值为HV0.2122,出现在热影响区;焊接接头最大抗拉强度达到342 MPa,与母材等强,拉伸试样均在母材断裂,拉伸断口分布大小不一的韧窝,呈明显的韧性断裂特性;焊缝最高冲击吸收功达到160 J,高于母材的,热影响区最低冲击吸收功121 J,略低于母材的。  相似文献   

4.
研究焊后热处理对激光焊接2.5 mm厚Ti-22Al-27Nb合金组织和高温力学性能的影响。结果表明,Ti-22Al-27Nb合金激光焊接焊缝组织为单一的B2相。焊缝650℃高温抗拉强度为母材的75%,塑性则仅为母材塑性的40%左右。拉伸断口形貌为岩石状,呈现沿晶断裂特征。经过焊后热处理,焊缝组织为B2相+O相。相对于未热处理接头,热处理后焊缝和热影响区的硬度下降很多并趋于平缓。热处理温度750℃、保温时间1 h时焊接接头650℃高温抗拉强度达到了母材的87.5%,塑性为母材的82.2%,接头断裂形式为解理断裂。  相似文献   

5.
通过对T91/P91窄间隙热丝TIG焊试验,对比研究了焊接接头各区包括焊缝、热影响区、母材的显微组织,以及各项力学性能比如常温拉伸、高温拉伸、硬度及冲击性能,从而探究窄间隙热丝TIG焊对T91/P91钢焊接性的影响.试验结果表明,焊接接头组织均匀,主要为回火马氏体;抗拉强度达到了母材水平甚至比母材更强;焊缝区域硬度分布比较均匀,硬度值高于热影响区和母材;焊缝的冲击韧性也与母材相当.研究结果表明,窄间隙热丝TIG焊可以改进T91/P91焊接接头的焊接质量,焊接接头各项力学性能均满足使用需求,从而获得了较高质量的焊接接头.  相似文献   

6.
采用真空电子束焊对7 mm厚TC4钛合金板进行焊接,利用光学显微镜对焊接接头显微组织进行表征,分析不同区域显微组织,通过显微硬度、拉伸试验、冲击试验、弯曲试验对力学性能进行测试,借助扫描电镜对拉伸、冲击断口形貌进行观察,对焊接接头显微组织演变规律和性能进行研究。结果表明,真空电子束焊焊接接头成形良好,TC4钛合金母材组织由α相和β相组成,焊缝区组织由原始的β相转变而成α′相(针状马氏体),为粗大的柱状晶组织,热影响区组织由均匀且细小的针状马氏体α′相及原始的α相和β相组成;焊缝区显微硬度高于热影响区和母材区,从焊缝顶部到根部显微硬度逐渐下降;焊接接头抗拉强度高于母材抗拉强度;V形缺口在焊缝区的冲击试样具有较好的韧性。  相似文献   

7.
35CrMnSi钢电子束焊接头显微组织和力学性能研究   总被引:1,自引:0,他引:1  
研究了35CrMnSi 钢电子束焊接头的组织和力学性能.试验结果表明:该钢电子束焊焊缝为典型的针状马氏体+残余奥氏体组织,HAZ为中温组织;2种厚度钢板焊接接头各区域的硬度值基本一致,且焊缝硬度高于热影响区的,热影响区的硬度高于母材的.经电子束焊后,2种厚度35CrMnSi钢板接头塑性比母材的塑性低,这与其显微组织有关;35CrMnSi钢电子束焊焊缝的冲击韧度低于母材.  相似文献   

8.
对Fe-Cr-Ni-Mo高强钢进行电子束焊接,并对焊接接头进行不同温度回火处理,利用OM、SEM和TEM等研究了回火对焊接接头组织和力学性能的影响。结果表明,焊态下焊缝金属组织为较粗大的板条马氏体,而热影响区则由较细的马氏体和少量的碳化物组成。高温回火后,在焊缝和热影响区均析出了大量的碳化物。硬度测试结果表明,焊态下焊缝金属和热影响区的硬度相当(分别为560 HV0.5和530 HV0.5),回火处理后硬度显著下降,但仍高于母材(415 HV0.5)。力学性能测试结果表明,焊接接头拉伸试样断裂位置均在母材,焊态下的焊缝冲击吸收能较差,为48 J;回火处理后焊缝金属的冲击吸收能显著提高,如600℃处理后焊缝金属的冲击吸收能为94 J。  相似文献   

9.
采用惯性摩擦焊连接FGH98合金,研究了热处理对FGH98合金惯性摩擦焊接头显微组织以及力学性能的影响。结果表明,原始态焊接接头焊合区主要由γ 和 γ′ 两相组成,γ′相在焊接过程中发生了回溶,残余γ′相尺寸和数量均明显降低,经过热处理后,焊合区晶粒尺寸、残余γ′ 相的尺寸和数量未发生明显变化;原始态焊接接头的焊合区的硬度值最高,在焊合区的中心区域存在硬度降低的现象,热处理态焊接接头显微硬度整体分布相比原始态硬度值未发生较大变化;焊接接头室温拉伸的断裂位置在母材区,屈服强度大于1 130 MPa,达到母材的93%以上;抗拉强度大于1 616 MPa,达到母材的99%以上;750 ℃拉伸的断裂位置在焊缝区,屈服强度大于1 025 MPa,达到母材的99%以上;抗拉强度大于1 197 MPa,达到母材同等水平。 创新点:(1)采用惯性摩擦焊焊接FGH98镍基粉末高温合金,研究了热处理前后的焊接接头微观组织形貌。 (2)结合微观组织分析,对力学性能进行了研究。  相似文献   

10.
采用真空电子束焊焊接金属间化合物Ni_3Al基高温合金JG4356,利用OM和SEM观察焊接接头的微观组织,利用EDS分析相成分,使用万能力学试验机和显微硬度仪测试焊接接头的力学性能,并观察拉伸断口的形貌。JG4356合金电子束自熔焊中,焊缝熔深和熔宽与电流成正比关系,增大加速电压和降低焊接速率有利于增大焊缝深宽,但过小的焊接速率或低电压小电流焊接会造成焊缝熔宽大于熔深。采用焊接电流10.8 m A、加速电压50 kV、焊接速度760 mm/min的工艺条件对2 mm板材进行无坡口对接焊,可以获得表面形貌良好,室温抗拉强度高于母材的焊接接头。焊接接头平均抗拉强度高达761 MPa、伸长率3.9%,断裂模式为准解理断裂;焊缝和热影响区硬度较高,平均值分别为395.8 HV和342.3 HV;母材为333.6 HV。  相似文献   

11.
惠媛媛  张敏  庄明祥  李杰  樊浩 《焊接学报》2019,40(8):104-108
为了进一步探索ULCB钢的焊接性能,采用真空电子束穿透焊不同束流强度对14 mm钢板对接接头进行了焊接,通过焊缝形貌比较,束流强度为100 mA时,接头焊缝成形最好,选取该接头做了拉伸、硬度、冲击试验及金相组织分析.结果表明,拉伸试样的断裂区域在母材区,抗拉强度为761 MPa、屈服强度为669 MPa,硬度范围在270~330 HV;冲击试样的断裂区域在热影响区,焊缝区平均冲击功为288 J,热影响区平均冲击功为273 J;接头显微组织中,焊缝区和热影响区产生了α'马氏体相,使焊缝区和热影响区产生相变强化,导致焊接接头的强度和硬度均高于母材.  相似文献   

12.
TC4厚壁管全位置PAW工艺及接头性能分析   总被引:1,自引:1,他引:0       下载免费PDF全文
介绍了一种适合TC4钛合金厚壁管的等离子弧焊接新工艺,通过对工艺参数分区控制和优化匹配,实现了钛合金管道全位置优质焊接.采用光学显微镜、扫描电镜以及显微维氏硬度仪分别对特征位置焊接接头的显微组织、断口形貌以及显微硬度进行表征.结果表明,特征位置接头焊缝区及热影响区显微组织均主要由网篮状α'相、针状α相以及粗大β相组成;接头拉伸性能良好,拉伸试样均断裂于母材处;冲击试样的断裂形式为韧性断裂;焊缝区及热影响区硬化区的硬度值高于母材.  相似文献   

13.
TC17钛合金线性摩擦焊接头组织及力学性能分析   总被引:2,自引:2,他引:0       下载免费PDF全文
针对固溶时效态TC17钛合金焊态及焊后热处理态线性摩擦焊接头,进行显微组织及力学性能对比分析. 结果表明,焊态时焊缝组织发生了回复与再结晶,由于焊后冷却速度较快,生成了亚稳定β相,焊缝区发生了软化;热力影响区组织沿受力变形方向拉长、细化、交替呈带状分布,加工硬化程度较高,显微硬度明显高于其它区域;热影响区由于二次次生α相基本溶解于亚稳定β相,导致显微硬度显著降低. 经过焊后热处理,亚稳定β相发生时效分解,析出了弥散程度更高的针状次生α相使得焊接区硬度大幅度提高. 由于亚稳定相的生成,焊态接头发生软化,拉伸均断裂在焊缝区,抗拉强度达到母材强度91.8%,断口呈脆性断裂形态;焊后热处理态接头由于二次次生α相的析出,起到弥散强化的作用,拉伸试验均断在母材,断口呈典型韧性断裂形态.  相似文献   

14.
采用闪光焊对FeCrAl合金进行对接接头焊接,通过扫描电子显微镜及能谱仪等手段研究了焊接接头的显微组织特征、不同区域氧化物颗粒的分布情况及力学性能. 结果表明,闪光焊焊接FeCrAl合金所得焊接接头显微组织主要为等轴晶,在焊缝和热影响区氧化物未出现明显聚集及向晶界偏聚的现象,且在晶内和晶界都可以呈现弥散分布的特征;焊接接头抗拉强度值达到594 MPa,为母材强度的90.5%;接头断裂在焊缝区,整体呈现脆性断裂模式;焊缝晶粒的粗化导致焊缝区硬度降低,最终引起焊接接头出现软化.  相似文献   

15.
AZ71镁合金TIG焊焊接接头微观组织与力学性能   总被引:1,自引:0,他引:1  
采用钨极氩弧焊接方法对2.2mm厚镁合金AZ71薄板进行焊接加工。焊后对接头进行拉伸试验和硬度测试,结果表明:采用90A的电流焊接时,接头抗拉性能最好(281.23MPa),达到母材的89.58%。断裂发生在焊缝区,焊接接头断口呈准解理断口,接近解理断口;母材断裂为延性断裂,断口呈韧窝断口;焊缝区显微硬度最高,其次是母材,热影响区硬度最低。  相似文献   

16.
脉冲电子束焊接是指将电子束流调制成脉冲方波的形式进行焊接的一种先进技术。脉冲束流能提高被焊金属蒸发率,从而提高焊接效率、增加焊缝深宽比。本文采用常规直流电子束和不同频率脉冲电子束对1.2 mm薄板TC4钛合金进行了焊接工艺试验,并对接头进行了微观组织与力学性能检测。结果表明:脉冲电子束焊接能够形成无熔合缺陷的焊缝,随着频率的增加,焊缝咬边和背面余高减小,表面成形得到改善;由于焊接热循环变化,脉冲束流可加快熔池冷却速度,细化组织晶粒;直流和脉冲电子束焊接接头拉伸时均断裂在母材区,拉伸强度不低于母材;高频脉冲电子束可提升焊接接头塑性和焊缝区、热影响区的显微硬度,频率为10 kHz时,焊接接头的断后伸长率可达14.9%,约为母材的80%,焊缝区和热影响区的显微硬度分别为375 HV和368 HV。  相似文献   

17.
研究了焊前退火和调质2种热处理工艺对440C不锈钢电子束焊接接头的组织和力学性能的影响,分析了2种状态下的组织演变规律、接头拉伸力学性能和硬度分布特点. 结果表明:2种热处理状态的板材经过电子束焊接后,焊缝成形良好,焊缝区域均为马氏体和残留奥氏体组织,呈现出非平衡凝固组织,碳及合金元素以固溶形式存在于马氏体及残余奥氏体中,焊缝区域硬度达到398 HV. 焊前经调质热处理后,母材基体由铁素体转变成回火马氏体和残余奥氏体混合组织,同时部分碳化物固溶在基体组织中,使基体组织硬度提高了60%. 与焊前退火态相比,焊前调质热处理板材经电子束焊接后,可使焊接接头抗拉强度提高20%,焊接热影响区硬度提高35%,但接头的塑性变形能力有所下降,断裂均发生在热影响区.  相似文献   

18.
基于冷金属过渡加脉冲(CMT + P)的焊接方法,研究了新型回火马氏体耐热钢G115的焊接性以及焊接接头组织和性能. 结果表明,焊接接头经热处理后为回火马氏体组织,焊缝晶粒呈现出等轴晶和柱状晶两种不同的形貌,而焊接热影响区和母材晶粒均为等轴晶. 与焊条电弧焊(SMAW)相比,CMT + P焊接方法有效降低了热输入,大幅度减小了热影响区宽度,提高了焊接接头的拉伸性能和热影响区冲击韧性,焊接接头焊缝冲击韧性略有降低. 焊接接头的室温和高温拉伸断裂机理均为韧性断裂,室温拉伸断口的韧窝内存在一定量的析出相.  相似文献   

19.
选用1 × 3结构的ER5356铝合金多股绞合焊丝,进行5A06铝合金激光-多股绞合焊丝MIG复合焊对接试验,通过金相、扫描电镜、电子背散射衍射、拉伸和硬度测试等方法对20 mm厚焊接接头的微观组织和力学性能相关性进行分析. 结果表明,铝合金激光-多股绞合焊丝MIG复合焊工艺性较好,焊缝主要由α(Al)基体和弥散分布的Al3Mg2第二相组成,焊缝中心区以等轴晶为主,晶粒的平均尺寸为34.83 μm;热影响区晶粒细小,存在回复再结晶,晶粒的平均尺寸为10.21 μm. 焊接接头硬度在75 ~ 90 HV之间,其中熔合区硬度值最低,为母材硬度值的84.6 %;焊接接头平均抗拉强度292 MPa,为母材抗拉强度的84 %,拉伸试件断口断裂位置为熔合区附近,呈现出韧性断裂特征.  相似文献   

20.
采用电子束焊接技术对铂基合金与GH3128进行焊接。利用工业CT、扫描电子显微镜、显微硬度仪和材料万能试验机,研究了铂基合金与GH3128焊接接头显微组织、力学性能及断口形貌。结果表明:铂基合金与GH3128具有良好的焊接性能,焊接接头的质量良好,无缺陷,成分均一,焊缝区显微硬度在360~380之间,焊缝强度为499 MPa,断裂方式为韧性断裂,断裂位置位于铂基合金一侧。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号