首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
医用钴基合金的组织结构及耐腐蚀性能   总被引:1,自引:0,他引:1  
以锻造CoNiCrMo,CoCrMo和CoCrMoC台会为研究对象,通过金相观察,XRD分析和耐腐蚀试验,研究了3组合金在不同热处理条件下的显微结构,相成分及在Hi同溶液中的耐腐蚀性能。结果表明:2组锻造合金的再结晶温度都是1000℃,且晶粒尺寸随着固溶温度升高和时效时间延长而逐渐变大。3组试样在NaCl溶液中为钴基合金典型的阳极极化曲线;在Hanks’溶液中均有一个二次钝化行为,且锻造CoNiCrMo合金的二次钝化区域较窄,而其他2组合金则较宽;在含柠檬酸三钠的溶液中过钝化电位降低,柠檬酸盐的存在降低了含金的耐腐蚀性能。热处理对合金的耐腐蚀性能影响不大。  相似文献   

2.
研究了IMI834钛合金棒材经不同固溶和时效热处理后的显微组织和性能,以期获得固溶和时效与合金组织性能的对应关系以及最优热处理工艺。结果表明,抗拉强度和屈服强度随固溶温度的升高先升高后降低,最大强度和塑性值出现在1 005~~1 025℃之间;合金的室温和高温强度及高温断面收缩率随时效温度升高先降低后增加;伸长率及室温断面收缩率先略升高后略降低,合金组织随时效温度变化不明显;拉伸断裂过程中,裂纹在初生α相处萌生;锻态IMI834合金的最佳热处理工艺为(1 005~1 025℃)×2h+水淬+(750~800℃)×2h+空冷。  相似文献   

3.
《铸造技术》2017,(6):1335-1337
研究了形变后的6082铝合金热处理工艺参数对其组织和性能的影响。结果表明:合金固溶时效后获得大量均匀分布的Mg_2Si强化相;随着固溶温度升高、固溶时间和时效时间的延长,合金时效后的硬度呈现出先升高后降低的趋势。6082铝合金较适宜的热处理工艺参数为555℃×4 h固溶水淬+175℃×10 h时效处理。  相似文献   

4.
采用OM、SEM和XRD等方法研究了固溶时效热处理对近β型钛合金(Ti-3Al-6Mo-2Fe-Zr)显微组织、力学性能及耐腐蚀性能的影响。结果表明,随着固溶温度的升高,初生α相的含量逐渐降低,经930 ℃固溶处理后,合金为单一β相。固溶温度在830 ℃以下时,随着固溶温度的升高,初生α相逐渐转变为β相,第二相强化作用减弱,合金强度逐渐降低,塑性逐渐提高,断裂方式为微孔聚集型;固溶温度在830 ℃以上时,随着固溶温度的升高,β相晶粒逐渐粗化,合金强度降低,塑性下降,断裂方式由微孔聚集型断裂向解理断裂转变。随着固溶温度从780 ℃升高至930 ℃,初生α相的含量降低,β/α相界逐渐减少,耐腐蚀性能提升。经780 ℃固溶1 h(水冷),500 ℃ 时效6 h(随炉冷却)处理后,细小针状的次生α相于亚稳β相中沉淀析出,合金强度显著提高,但塑性下降。  相似文献   

5.
研究了固溶及时效处理对La变质4004铝合金组织及性能的影响。结果表明:随着固溶温度的升高、固溶时间的延长,合金中共晶硅熔断并粒化,500℃固溶6 h时性能达到最佳;随着时效温度的升高、时效时间的延长,合金硬度先升高后降低,时效温度为200℃、时效时间6 h时其硬度达到最高值112 HBW。变质4004铝合金最佳热处理工艺为:500℃×6 h固溶+200℃×6 h时效。  相似文献   

6.
通过改变固溶热处理温度、保温时间和固溶后冷却方式,研究了不同固溶热处理工艺对一种新型铸造高温合金组织和性能的影响.结果表明,将合金在不同温度固溶处理2 h后空冷,合金在760℃,660 MPa和980℃,180 MPa条件下的持久寿命随热处理温度的升高先升高而后降低;固溶处理温度为1220℃时,760℃,660 MPa条件下的持久寿命达到最高;固溶处理温度为1180℃时,980℃,180 MPa条件下的持久寿命最高;当热处理温度从1120℃升高到1220℃时,拉伸强度随温度升高而增加,继续升温到1240℃,拉伸强度下降.当固溶热处理温度为1120℃,处理时间在2-8 h范围内变化时,合金在760℃,660 MPa条件下的持久寿命随时间延长而降低,而在980℃,180 MPa条件下的持久寿命随处理时间延长而升高;当热处理时间为2和4 h时,拉伸强度较高;延长到6和8 h时,拉伸强度下降.当冷却方式不同时,合金持久性能也发生变化.γ′相和γ/γ′共晶组织在尺寸、形态、分布和数量上的变化是导致合金力学性能变化的关键因素.  相似文献   

7.
通过对7075铝合金进行不同温度(450、465、480和495 ℃)的固溶处理,研究了固溶温度对该合金的硬度、室温拉伸性能及高周疲劳性能的影响,并用光学显微镜和扫描电镜对合金显微组织及疲劳断口进行观察。结果表明,随着固溶温度的升高,合金组织发生不同程度的静态再结晶和晶粒长大,合金硬度和拉伸强度均先升高后降低,480 ℃固溶处理后达到最高;疲劳极限随着固溶温度的升高先降低后升高,495 ℃固溶处理后达到最高。疲劳裂纹主要起源于粗大残留相处,扩展过程中产生的二次裂纹可降低裂纹扩展的驱动力,进而降低合金的裂纹扩展速率,提高合金疲劳性能。  相似文献   

8.
研究了不同热处理制度(固溶时效,退火)对TA31合金微观组织和力学性能的影响。采用OM、TEM、SEM研究了其微观组织形貌,采用拉伸试验机测试了拉伸性能。结果表明:在相变点之下依次选取不同固溶温度(920、940、960、980℃)对TA31合金试样进行固溶+时效工艺处理,当固溶温度低于960℃时,时效后的强度随固溶温度升高而增大;当固溶温度大于960℃后,强度降低;αkv值随固溶温度升高而增大。试样固溶时效态的拉伸强度高于试样退火态的强度。TA31合金随着固溶温度的升高,初生α相含量减少,且组织中存在等轴初生α相+β转内细小的针状次生α相。  相似文献   

9.
研究固溶时效热处理对β21s钛合金棒材显微组织和力学性能的影响。结果表明:在固溶温度一定时,随着时效温度的升高(从540,550到560℃),合金的强度下降,而塑性则有所上升;在时效温度一定时,随着固溶温度的升高(从750,770,790到800℃),合金强度先有所升高(在790℃时达到峰值),而后又有所降低,而塑性则逐步降低。  相似文献   

10.
对Ti-38644钛合金ϕ68 mm棒材进行了不同温度、保温时间和冷却方式的热处理试验,研究了不同热处理制度对合金棒材显微组织和力学性能的影响。结果表明,随着固溶温度的升高,析出α相含量增大,强度明显下降,塑性提高;随着时效温度的升高,析出α相粗化,强度降低,伸长率随之升高,强化效果降低;随着时效保温时间的延长,析出α相进一步增加,强度呈先增加后降低的趋势,塑性变化与之相反;固溶冷却方式对合金组织性能的影响也很明显,随着冷却速率的加快,获得的β晶粒比较细小,时效后的强度随之明显增高,同时伸长率下降也很明显。为了获得良好的强塑性匹配,最佳的固溶时效热处理工艺为810 ℃×1 h(油冷)+510 ℃×8 h(空冷)。  相似文献   

11.
采用冷等静压+真空烧结(CIP)法制备Ti6Al4V2Cr1.5Mo合金。对经不同的固溶温度(860~950℃)和时效温度(480~600℃)热处理后合金的组织和力学性能进行研究。结果表明:随固溶温度的升高,合金的强度、伸长率和硬度都呈先升高后降低的趋势,在920℃时都达到最大值;在920℃固溶时,随时效温度的升高,合金的强度、伸长率和硬度也随温度的升高先升高后降低,在520℃时达到最大值,且组织形态为双态组织,固溶时产生的次生α相在时效过程中分解产生弥散的α+β相能提高合金的强度和硬度,α相的含量能保证合金良好的塑性,使合金有较好综合力学性能。因此,Ti6Al4V2Cr1.5Mo合金的最佳热处理工艺为固溶920℃(WQ)+时效520℃(AC),此时强度、伸长率和硬度分别为1169.6 MPa、8.3%和621.7 HV0.1。  相似文献   

12.
通过真空电弧熔炼方法制备了Fe-13Cr-3.5Ni不锈钢,并系统研究了不同热处理工艺对其微观组织以及硬度的影响。结果表明:熔炼态Fe-13Cr-3.5Ni不锈钢为典型的板条状马氏体组织;经过不同温度固溶和回火处理(600 ℃)后,其组织结构由板条状马氏体和少量残留奥氏体组成,残留奥氏体含量随着固溶温度的升高先增加后减少,而硬度值先降低后升高,硬度最低值为101.5 HRB;在1000 ℃淬火并在不同温度回火后其组织结构由回火板条状马氏体以及残留奥氏体组成,在650 ℃以下回火时,随着回火温度的升高奥氏体含量逐渐增多,当回火温度达700 ℃时,残留奥氏体含量下降,其洛氏硬度值随着回火温度的升高先降低后升高,其硬度值在99~107 HRB范围内。  相似文献   

13.
对热轧态GH3535合金进行不同温度和时间的固溶处理,采用扫描电子显微镜(SEM)、电子背散射衍射技术(EBSD)和拉伸试验等手段研究了固溶热处理后的合金组织及其对力学性能的影响。经过1177℃,20 min固溶热处理后,合金发生再结晶与晶粒长大,一次M_6C碳化物发生部分溶解。在更高温度下(1220和1260℃)固溶热处理后,晶粒异常长大且一次M_6C碳化物数量明显减少。随着固溶温度的提高和固溶时间的延长,合金的抗拉强度随之降低,而延伸率提高。通过组织分析发现,不同固溶热处理后合金的拉伸性能的变化源于晶粒的长大和一次M_6C碳化物的溶解。  相似文献   

14.
沈君 《金属热处理》2012,37(9):119-122
采用差热分析(DSC)、室温拉伸、电导率测试、显微组织观察研究了不同固溶温度和固溶时间对7050铝合金厚板组织和性能的影响。结果表明,试验用合金的过烧温度约为486.3℃;随固溶温度升高,合金电导率下降,强度先升高后下降,热处理温度高于过烧温度后,伸长率迅速下降。在480℃×90 min条件下固溶处理时,T6时效态合金的抗拉强度、屈服强度和伸长率分别达到600 MPa、525 MPa和15.0%。合金适宜的固溶处理制度为480℃×(90~120)min。  相似文献   

15.
采用冷等静压+真空烧结(CIP)法制备Ti6Al4V2Cr1.5Mo合金。对经不同的固溶温度(860~950 ℃)和时效温度(480~600 ℃)热处理后合金的组织和力学性能进行研究。结果表明:随固溶温度的升高,合金的强度、伸长率和硬度都呈先升高后降低的趋势,在920 ℃时都达到最大值;在920 ℃固溶时,随时效温度的升高,合金的强度、伸长率和硬度也随温度的升高先升高后降低,在520 ℃时达到最大值,且组织形态为双态组织,固溶时产生的次生α相在时效过程中分解产生弥散的α+β相能提高合金的强度和硬度,α相的含量能保证合金良好的塑性,使合金有较好综合力学性能。因此,Ti6Al4V2Cr1.5Mo合金的最佳热处理工艺为固溶920 ℃ (WQ)+时效520 ℃ (AC) ,此时强度、伸长率和硬度分别为1169.6 MPa、8.3%、621.7 HV0.1。  相似文献   

16.
通过力学性能试验和显微组织观察,研究了热处理工艺对G110合金组织和力学性能的影响。结果表明,随固溶温度的升高,室温硬度和冲击性能变化不大,700℃高温强度变化不大,高温塑性逐渐下降,1020℃固溶可以获得均匀的再结晶组织;随时效温度的提高,γ'相析出数量逐渐增加,室温强度先升高后降低,700℃高温强度逐渐增加,高温塑性逐渐下降,800℃时效具有较高的室温、高温综合力学性能。G110合金最佳的热处理工艺为1020℃固溶+800℃时效。  相似文献   

17.
研究固溶温度和时效温度对Ti62421s高温钛合金显微组织、相成分和常温拉伸性能的影响。结果表明:在两相区进行固溶处理时,随着固溶温度的升高,合金组织中的α相减少,β转变组织(βt)增多,当固溶温度进入β相区后为篮网状β转变组织;随着时效温度的升高,α相长大;随着固溶温度和时效温度的升高,β转变组织中只有Al含量升高,其他合金元素的含量都下降;随着固溶温度的升高,强度和断面收缩率先升高后迅速降低,伸长率逐渐下降;经(980℃,1h,AC)+(550℃,8h,AC)热处理后,合金可以获得较好的综合性能,抗拉强度达1077.04MPa,伸长率达13.6%,断面收缩率为26.02%。  相似文献   

18.
研究了热处理工艺对6061铝合金硬度和电导率的影响。结果表明:固溶处理过程中,随着固溶时间的增加,合金硬度先降低后升高,后又逐渐降低,随着固溶温度的增加,显微硬度值逐渐增大;时效过程中,硬度值随时效时间增加先升高后降低,电导率随时效时间增加逐渐升高并趋于稳定;6061铝合金最佳的热处理制度为540℃固溶4 h+173℃时效11 h,此时合金的硬度值为119.74 HV6,电导率为56%·IACS;对合金电导率影响最大的参数是固溶温度和时效时间,对硬度值影响最大的参数是时效时间。  相似文献   

19.
对A286铁基高温合金进行固溶温度+时效两段式热处理工艺优化研究。采用固溶热处理制度为930~1020℃/4 h/WC,固溶时间为0~4 h。合金时效研究采用640~790℃/4 h/AC热处理;在时效温度730℃条件下,研究0~16 h时效时间对合金组织及性能的影响。结果表明:随着固溶温度上升和时间延长,合金晶粒尺寸有一定程度长大,但硬度逐渐下降;随着时效温度提高及时间延长,合金的硬度先升高而后降低;在固溶热处理过程中,合金随着固溶处理温度提高及时间的延长,γ'相回溶入基体;当固溶后的时效温度提高至700℃才析出γ'强化相;随着时效时间延长,析出的γ'强化相发生粗化;合金时效γ'强化相粗化过程符合Ostwald熟化长大规律,计算值与实际值相关系数大于97%;同时,确定了最佳的热处理工艺制度。  相似文献   

20.
采用正交试验法对喷射沉积过共晶铝硅合金挤压坯的固溶+人工时效处理工艺进行优化,研究固溶和人工时效的温度及时间对挤压态合金组织结构的影响,测定不同热处理后合金的硬度和耐磨性,确定最佳的热处理工艺.结果表明,固溶温度、固溶时间、时效时间和时效温度对过共晶铝硅合金组织和性能的影响依次降低.并得 出最佳的热处理工艺为520℃×3h 固溶+120℃×10h时效,处理后合金的硬度为84.4HB,相对耐磨性为原始挤压态试样的1.22倍.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号