首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
通过单道次、双道次压缩试验,研究了低Ni型LNG钢的高温奥氏体动态再结晶及静态再结晶行为,并采用两阶段控制轧制及超快速冷却技术进行不同轧制工艺下的热轧试验,通过热模拟及热轧试验研究了低Ni型LNG钢的热变形行为及力学性能。结果表明,在高温(1000~1050 ℃)、低应变速率(0.1~0.5 s-1)下奥氏体容易发生动态再结晶,确定了发生再结晶的临界条件,并建立了动态再结晶动力学模型。试验钢在较高温度(800~1050 ℃)、较长道次间隔时间(60 s)下静态软化现象明显,容易发生静态再结晶。依据热模拟试验结果制定热轧试验工艺,通过控制精轧开轧温度和终轧温度调控高温奥氏体再结晶行为,从而细化晶粒,改善低Ni钢的冲击性能。精轧开轧温度920 ℃、终轧温度770 ℃时,低Ni钢的低温冲击吸收能量为180.1 J,屈服强度为595.1 MPa,抗拉强度为717.8 MPa。  相似文献   

2.
本文用定量金相法研究了第一道轧制(初轧)压下率及终轧温度对轧后奥氏体晶粒平均直径及铁素体晶粒平均直径的影响。结果表明,轧后奥氏体晶粒平均直径随第一道轧制压下率增加而减小,随终轧温度降低而增大;轧后铁素体晶粒平均直径随第一道轧制压下率增加和终轧温度降低而减小。在820℃(A_(r3)附近)终轧时,轧后铁素体晶粒最细小;略低于A_(r3)终轧会引起铁素体晶粒粗化。  相似文献   

3.
微合金化钢的动态再结晶及其显微组织的研究   总被引:2,自引:0,他引:2  
应用Gleeble-1500热模拟试验机测定了合金化钢在不轧温度下的真应力-真应变曲线,研究了终轧温度及微合金元素含量对动态再结晶的影响。研究结果表明,V、Nb可显著抑制微合金化钢轧制过程中形变奥氏体的动态再结晶,因此,在较高的终轧温度下,仍能得到细小而均匀的显微组织。  相似文献   

4.
《铸造技术》2019,(1):106-108
采用控冷控轧工艺对3种规格的Q460E中厚板生产的工艺过程进行研究。结果表明,采用两阶段预热和两阶段控制轧制,第一阶段在奥氏体再结晶区轧制,铸坯开轧温度为1 050~1 100℃,道次压下率控制在10%以上;第二阶段在奥氏体未再结晶区轧制,开轧温度为≤950℃,终轧温度为860~790℃,待温后累计压下率≥50%,道次变形率≥12%;采用层流冷却方式,钢材具有良好的强韧性能。  相似文献   

5.
通过改变在部分道次大压下率轧制时粗轧及精轧的轧制温度,研究了轧制温度对轧制Mg-2Zn-xY镁合金微观组织的影响,还研究了Y含量对合金组织的作用。结果表明,在部分大压下率粗轧后,合金组织发生了再结晶,且均为等轴晶组织。随着轧制温度的提高,平均晶粒显著增大,并以300℃粗轧时最佳。精轧温度不宜过高或过低,在350℃左右精轧能有效抑制孪晶组织的产生,获得较均匀的微观组织。不同Y含量的Mg-2Zn-xY合金的轧后晶粒尺寸与轧制工艺有关。  相似文献   

6.
采用控冷控轧工艺生产不同规格的Q460D中厚板,研究工艺过程对其力学性能的影响。结果表明,第一阶段轧制在奥氏体再结晶区进行,铸坯的开轧温度为1 050~1 100℃,道次压下率控制在10%以上;第二阶段轧制在奥氏体未再结晶区进行,开轧温度≤950℃,终轧温度为860~790℃,待温后累计压下率≥50%,道次变形率≥12%;采用层流冷却方式;使钢材具有良好的强韧性能。  相似文献   

7.
对挤压态Mg-6Zn-0.55Zr合金进行了轧制试验,并采用光学显微镜、万能试验机研究了轧制及轧制后退火对挤压态Mg-6Zn-0.55Zr合金显微组织与力学性能的影响。结果表明:挤压态合金经轧制温度320℃,道次压下率为60%、30%、10%的3道次轧制,板材边缘无裂纹产生,表面质量良好。轧制态合金的晶粒内有大量孪晶与位错,经240℃×1 h退火后,合金完全静态再结晶,等轴晶粒较为细小、均匀,合金的抗拉强度和伸长率分别达到316 MPa和29.6%,综合力学性能最佳。  相似文献   

8.
低碳低合金钢形变奥氏体再结晶规律研究   总被引:1,自引:1,他引:0  
采用阶梯试样,通过光学显微镜观察,研究了低碳Mn、Ni、Mo、Nb、Cr、V等低合金化钢形变奥氏体再结晶规律,分析了变形温度、变形量等工艺参数对变形奥氏体再结晶百分数的影响,绘制了实验钢变形奥氏体再结晶图。结果表明,在变形量为50%、轧制温度为1050℃和在变形量为70%、轧制温度为1000℃时,实验钢均发生完全再结晶。为此,应控制再结晶区终轧温度高于1000℃,多道次累积变形量大于60%;控制非再结晶区开轧温度低于950℃,第一道次变形量15%~20%。  相似文献   

9.
 在未控轧控冷的轧制条件下,Q345E钢材终轧温度较高,铌推迟形变奥氏体再结晶的作用不明显。虽然铌/钒复合微合金化钢晶粒有一定程度的细化,由于微合金元素的沉淀强化及热轧态组织中贝氏体的出现,导致含铌微合金化钢低温韧性不能满足使用要求。通过对Q345E钢化学成分进行控制,结合控轧控冷技术,并采取合理的热处理工艺,使Q345E钢在保证高强度的基础上,-40 ℃低温冲击韧性得到明显提高。  相似文献   

10.
采用多道次降温热轧工艺对ZK60镁合金铸锭进行累积大塑性变形。此工艺方法可促进动态再结晶细化晶粒的程度,经6道次轧制后,晶粒尺寸由铸态时的278μm细化至终轧板时的7.2μm。拉伸试验结果表明终轧板材在板平面内具有很好的强度各向同性,其屈服强度约为202MPa,抗拉强度约为307MPa,这与电子背散射衍射测试结果所揭示的良好组织均匀性和板平面晶粒取向分布均匀性相一致。进一步的研究表明,终轧板材不需要做进一步的时效处理,因此,本工艺方法在优化组织性能的同时,可以简化工艺流程和提高生产效率。  相似文献   

11.
研究了控制轧制和直接淬火相结合生产压力容器钢的工艺。奥氏体再结晶区变形时,单道次变形率越大则再结晶进行地越充分,再结晶后的晶粒就越细。奥氏体未再结晶区变形率增大则奥氏体晶粒内形变区域增多,从而使马氏体形核点增多,淬火后得到细板条马氏体组织。利用Cr、Mo等合金元素增加合金淬透性的性质,控轧后材料有足够高的温度进行直接淬火。材料经高温回火得到细小回火索氏体,力学性能优良。  相似文献   

12.
研究了控制轧制和直接淬火相结合生产压力容器钢的工艺.奥氏体再结晶区变形时,单道次变形率越大则再结晶进行地越充分,再结晶后的晶粒就越细.奥氏体未再结晶区变形率增大则奥氏体晶粒内形变区域增多,从而使马氏体形核点增多,淬火后得到细板条马氏体组织.利用Cr、Mo等合金元素增加合金淬透性的性质,控轧后材料有足够高的温度进行直接淬火.材料经高温回火得到细小回火索氏体,力学性能优良.  相似文献   

13.
采用单向压缩热模拟试验进行了普碳钢中厚板表层组织超细晶化研究。材料奥氏体化后快速冷却到550-800℃范围内变形,结果表明,随着变形温度的升高,材料分别发生形变后铁素体静态再结晶、形变过程中的铁素体动态再结晶,形变诱导奥氏体.铁素体相变并获得超细晶粒铁素体。随着保温时间增加,形变诱导相变获得的铁素体逆相变为奥氏体。实验室轧制9mm钢板的铁素体晶粒度,轧后空冷达到11级(约7μm),与热模拟试验的结果相一致,轧后快冷铁素体晶粒进一步细化到12级(约5μm)。实验室条件下,钢板的屈服强度,轧后空冷接近350MPa,轧后快速冷却,能再提高90MPa左右,但断后伸长率明显下降。  相似文献   

14.
蔡晨  谷宇  李静媛 《金属热处理》2022,47(12):19-27
研究了60 μm厚Fe-36Ni因瓦合金箔冷轧态、退火态及淬火态的热膨胀行为及力学性能演变规律和作用机理。结果表明,冷轧态合金具有最小的热膨胀系数,淬火态次之,退火态热膨胀系数最大;热处理可有效提高合金的居里温度Tc,从而增大使用温度范围,900 ℃保温1.5 h淬火试样具有最优的热膨胀性能($\bar{α}$(20-100 ℃)=1.02×10-6 K-1,Tc=276 ℃),自由取向晶粒的增加是导致合金热膨胀系数增大的原因。与冷轧态相比,热处理后合金发生完全再结晶,并产生退火孪晶伴随有晶粒尺寸的变化和∑3n晶界比例快速升高,其中800 ℃保温1.5 h淬火试样的晶粒最细小(6.6 μm),∑3n晶界占比最高,具有最高的屈服强度(267 MPa)和抗拉强度(414 MPa)。淬火处理试样的综合性能优于退火试样。相同热处理方式下,升高热处理温度,一方面降低热膨胀系数,提高居里温度;另一方面也降低了强度。  相似文献   

15.
利用道次间退火改善镁合金轧制成形性的研究   总被引:16,自引:3,他引:13  
塑性较差的六方结构镁合金轧制时易出现裂纹,尤其是在1mm以下薄板带的终轧阶段。其原因是在较低温度下基面取向晶粒内形成的切变带不易扩展所致。研究了MB1,AZ31(MB2)镁合金在热模拟条件和实验室热轧过程中利用静态再结晶改善形变组织、细化晶粒、提高成形性的规律。实验表明,在选择的多道次轧制退火工艺下可顺利轧出0.3mm厚的薄板带,得到平均尺寸~7μm的等轴细晶。热模拟条件下得到的形变温度、形变量和形变组织的关系可帮助确定实际生产轧制过程中各道次轧制的温度。织构测定表明,各阶段退火前后都得到强的基面织构。终轧阶段无法利用{10^-12}拉伸孪晶的静态再结晶细化晶粒,而只能利用压缩孪晶/扩展的切变带的再结晶细化晶粒。本文对轧制时利用动、静态再结晶细化晶粒的潜力及工艺优化进行了讨论。  相似文献   

16.
通过拉伸试验检测力学性能,用金相显微镜观察高强IF钢热轧态及退火态的纤维组织,并用透射电镜观察试验钢中的析出相粒子.在640℃终轧温度下,铁素体区轧制总压下率由60%升高到81%,高强热轧IF钢板的屈服强度为150~180 MPa,抗拉强度为312~321 MPa,屈强比为0.48~0.56,总伸长率为26.4%~31.2%,元值为0.22~0.23,而r值则由1.41降低到1.01,|Δr|则由0.625降低到0.133.结果表明.轧制总压下率对热轧高强IF钢的屈服强度、抗拉强度、总伸长率以及n值影响较小,但是对r值和平面各向异性值△r的影响非常大.铁素体区轧制总压下率的增大使得高强IF钢热轧板中动态再结晶的驱动力增大,发生动态再结晶晶粒的数目增多,从而导致形变织构的减弱和后续退火再结晶驱动力的减小.同时,随着铁素体区轧制总压下率的增大,高强IF钢退火再结晶程度降低以及析出的粒子变细.  相似文献   

17.
通过真空熔炼制备出高强韧Fe-20Mn-3Cu-1.3C TWIP钢。针对该合金钢凝固组织中易形成显微缩松的问题,在总热轧压下率相同的条件下,研究了道次平均压下率的变化对消除合金钢微孔缺陷和力学性能的影响。结果表明,随着道次平均压下率由35.96%提高至48.75%,合金内部微孔面密度显著降低,平均晶粒尺寸减小,合金的屈服强度、抗拉强度、强塑积大幅度提高。当道次平均压下率为48.75%时,屈服强度、抗拉强度和伸长率分别为536.70 MPa、1161.49 MPa、95.60%,强塑积高达111038.44 MPa.%,与当道次平均压下率为35.96%时相比,强塑积提高了47.70%,这一结果是目前TWIP钢综合力学性能数据的最高值。表明提高道次平均压下率消除缩松缺陷是提高该TWIP钢力学性能的关键。  相似文献   

18.
时效强化是一种便于实现,且对高强度因瓦合金比较有效的强化措施。实现这一强化手段的前提是需对材料进行适当的固溶处理。为此,本文研究了N微合金化因瓦合金在固溶处理过程中微观组织和力学性能及物理性能的变化。结果表明,随着固溶处理温度的升高,在热轧态形变的奥氏体晶粒中形成新的再结晶晶粒数量不断增加,晶粒尺寸逐渐增大。当固溶处理温度为1150 ℃时,热轧态析出的第二相粒子已基本完全溶解于奥氏体基体,此时的材料不仅晶粒细小,而且具有较高的硬度(187.4 HV0.1)、强度(Rm=625.6 MPa)和最好的塑性(A=37.0%)。尽管其膨胀系数是热轧态的1.20倍,但仍处在4.41×10-6 ℃-1很低水平。固溶处理温度进一步增加,不仅使奥氏体晶粒急剧增加,而且使材料的力学性能和膨胀特性全面恶化。  相似文献   

19.
本文叙述用控制轧制工艺生产具有细晶粒组织的微量合金化高强度高韧性钢板的化学成份和生产工艺。含碳(C≤0.12%)、锰(Mn=0.10~0.14%),并加入少量铌(Nb≤0.05%)及钒(V≤0.10%)的微量合金化钢,采用控制轧制工艺,充分发挥了微量合金元素的强化作用。严格控制板坯的加热温度、开轧温度及钢板的终轧温度,轧程压下率,变形速度等因素,最终获得细品粒的强化组织,使钢材具有良好的综合性能。无需正火处理就可获得屈服强度40kg/mm~2级和45kg/mm~2级的高强韧性钢板。通过试生产的数理统计分析,进一步得出低碳锰铌钢及低碳锰钒铌钢的组织和性能与钢的化学成分、轧制工艺具有密切的关系。  相似文献   

20.
热轧MB26镁合金微观组织和力学性能研究   总被引:1,自引:0,他引:1  
在420℃时,对MB26镁合金进行4道次、2道次不同压下率的热轧,观察热轧后合金的微观组织.并测试合金的力学性能.结果表明,随着轧制道次变形量的增大,轧制应变速率增加,镁合金发生了动态再结晶.从而获得细小的晶粒组织.热轧后,合金的强度较挤压态均得到提高,但伸长率有所下降.轧制2道次后显示出更好的力学性能,其拉伸断口存在许多深且均匀的韧窝,属于韧性断裂.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号