首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
微量稀土Er对Al-5Mg合金组织与性能的影响   总被引:12,自引:0,他引:12  
采用铸锭冶金法,制备含不同量稀土元素Er的Al-5Mg合金。利用拉伸力学性能测试、OM、XRD、SEM、TEM及EDS分析等分析测试手段,研究微量Er对Al-5Mg合金微观组织与力学性能的影响。结果表明:Er可以明显提高Al-5Mg合金的强度,添加0.4%Er(质量分数)的Al-5Mg合金的冷轧态屈服强度(σ0.2)提高了81MPa,而延伸率变化不大;Er的加入还能减少Al-5Mg合金的枝晶偏析,并可显著细化合金的晶粒组织;Er对晶粒的细化机理与其添加量有关,当Er含量较低时,符合传统的稀土细化机理;当Er含量较高时,由于在熔体中形成了初生Al3Er质点,在结晶形核时可以作为非均质形核核心,从而可显著细化晶粒组织;Er对合金的强化效应主要来自于晶粒细化及在晶内形成的细小二次Al3Er质点。根据实验结果可知,添加0.4%Er可使合金具有较为优异的综合性能。  相似文献   

2.
试验研究了在AZ91D镁合金中添加不同质量分数的稀土元素Y(w(Y)=0.4%、0.8%、1.2%、1.6%、2.0%)对其组织和力学性能的影响。结果表明,添加适量的稀土元素Y能改善AZ91D镁合金的组织并提高其力学性能。当w(Y)=1.2%时,对AZ91D镁合金的晶粒细化作用效果最佳,此时,晶粒尺寸为46.15μm,相比未加入稀土元素Y的AZ91D镁合金细化幅度为27.85%。稀土元素Y的加入还能提高AZ91D镁合金的硬度、抗拉强度、伸长率等性能,当w(Y)=1.2%时,AZ91D镁合金的各项力学性能最佳:维氏硬度为99.7 HV,室温抗拉强度为299 N/mm~2,伸长率为9.5%;200℃的抗拉强度为161.75 N/mm~2,伸长率为5.8%。  相似文献   

3.
通过金相显微镜、扫描电子显微镜、透射电子显微镜、能谱仪分析和力学测试,研究了添加Er对ZL201A铝合金的微观结构和力学性能的影响。结果表明,Er的加入使α-Al基体从柱状晶粒转化为细小的等轴晶粒,同时θ相(Al2Cu)从细小的网络结构转变为弥散细小颗粒结构。当Er含量达到0.4%(质量分数)时,晶粒细化效应达到最大,合金的力学性能最佳;α-Al的平均晶粒尺寸为19 μm;抗拉伸强度和伸长率分别为298.14 MPa和6.56%;断裂模式从脆性断裂转变为韧性-脆性断裂,有利于铝合金的实际应用。当Er含量超过0.4%(质量分数)时,合金的晶粒尺寸增大,力学性能下降。  相似文献   

4.
采用金相显微镜、扫描电镜及能谱分析等手段,研究了Er、Nd对铸态Mg-0.6Zr合金的组织和常温力学性能的影响.结果表明,Er、Nd对Mg-Zr镁合金组织均有细晶强化和固溶强化作用,提高了合金的力学性能.Mg-0.6Zr合金中添加Nd、Er后晶粒尺寸由300 μm分别细化至80 μm和50 μm左右.添加0.94%的Nd后,Mg-0.6Zr合金的抗拉强度和伸长率分别提高了13.87%和137.1%,屈服强度基本不变.而添加1.09%的Er后,Mg-0.6Zr合金的抗拉强度、屈服强度和伸长率分别提高了11.16%、11.94%和2.35%.复合加入Er和Nd时,合金的抗拉强度同单独加入Er后合金的抗拉强度相当,屈服强度和伸长率略有下降.  相似文献   

5.
通过DSC差热分析、光学显微镜、扫描电镜和EDS能谱分析研究了不同含量Er(铒)对Al-Mg-Si-Cu合金的铸态、均匀化组织的影响。结果表明:Er可以明显细化Al-Mg-Si-Cu合金的铸态组织。添加w(Er)=0. 4%,合金的晶粒细化效果较好;添加w(Er)0. 4%时,合金的初熔温度和熔化温度没有明显变化;添加w(Er)=0. 6%时,合金的初熔温度和熔化温度分别提高8℃和6℃。均匀化过程中析出了大量十分细小的析出相,均匀分布在晶内。Al-MgSi-Cu合金均匀化组织中晶界残留相主要为Al Cu Si相和Cu Al2相。添加w(Er)=0. 6%后,合金均匀化组织中晶界残留相主要是Er Al3相和Al MnFeSi相。  相似文献   

6.
稀土Er对Al-Mg-Si合金铸态微观组织的影响   总被引:3,自引:1,他引:2  
采用光学显微镜、扫描电镜(能谱)、XRD、 TEM等分析手段研究了稀土Er对Al-Mg-Si合金铸态微观组织的影响,并从理论上分析了Er的作用机理.研究结果表明:Er的质量分数为0.6%时合金的晶粒细化效果比较明显,当Er含量超过0.6%时,细化效果减弱.  相似文献   

7.
《铸造》2017,(12)
基于改善铸态Mg-6Al镁合金力学性能的目的,本研究利用OM、SEM、XRD、万能电子拉伸试验机系统研究了加入不同含量稀土Er(0,0.2%,0.5%,1.0%,1.5%,2.0%)对铸态Mg-6Al合金晶粒尺寸、第二相形态、数量、大小和分布以及力学性能的影响。结果表明,加入Er会产生Al_3Er新相;适量添加Er有良好的细化晶粒作用;第二相形态也由连续或不连续网状转变为短棒状或颗粒状,同时数量明显增多,尺寸减小,分布更加均匀;但当Er添加量高于1.5%时会引起晶粒和第二相粗化团聚,降低材料力学性能;Mg-6Al合金中最优Er添加量为1.0%,此时合金的抗拉强度181MPa,伸长率9.3%。并详细讨论了晶粒细化机理及Er对第二相的影响机理。  相似文献   

8.
采用高能球磨法制备金属Ti粉负载纳米TiC颗粒复合细化剂(TiC/Ti细化剂),研究细化剂加入量对铸态Al-Zn-Mg-Cu合金组织和性能的影响。结果表明:随着TiC/Ti细化剂加入量的增加,Al-Zn-Mg-Cu合金的晶粒尺寸逐渐减小;当加入量为0.5%(质量分数)时,晶粒形态由未添加细化剂时的525μm树枝晶转变为119.7μm的细等轴晶;随着细化剂加入量的增加,合金的晶粒尺寸逐渐粗化。铸态Al-Zn-Mg-Cu合金的第二相由T(AlZnMgCu)相和θ(Al_2Cu)相组成,晶粒细化使第二相细化、分散,但细化剂的添加并不改变第二相的组成。随着细化剂加入量的增加,合金的抗拉强度和维氏硬度升高;当细化剂加入量为0.5%时,合金的抗拉强度和硬度分别为249.5 MPa和137.3 HV,较未添加时的分别提高32.9%和16.4%。  相似文献   

9.
蔡薇  廖钰敏  张英  钟强强  潘少彬 《铸造》2015,(4):349-352
研究Si C的加入量对C194合金铸态组织和性能的影响。研究结果表明,Si C对C194合金铸态组织有明显的细化效果,能有效减小铸锭晶粒的尺寸。通过Image Pro Plus软件统计得出,当Si C添加量为0.4%时晶粒细化效果最佳,比未添加Si C的合金晶粒尺寸减小了83.1%。合金硬度也得到提高,Si C添加量为0.8%时硬度达到最高值为HB76.7,比未添加时提高了20%。  相似文献   

10.
研究了Al3Ti4B中间合金对Mg-7Al-0.4Zn-0.2Mn合金的显微组织、力学性能及耐腐蚀性能的影响.结果表明:当Al3Ti4B加入量小于0.3%(质量分数)时,合金的平均晶粒尺寸显著减小;当Al3Ti4B加入量为0.3%时,合金组织显著细化,平均晶粒尺寸由未变质合金的135μm细化到30 μm,合金拉伸力学性能和耐腐蚀性能最好;当加入量超过0.3%时,晶粒粗化;具有密排六方结构的高熔点化合物Tm2(靠=2 980℃)和AlB(%=980℃)均可作为一Mg的异质核心,大量异质结晶核心的存在是导致α Mg晶粒细化的主要原因.  相似文献   

11.
采用添加稀土元素Er改善Ti-16Al-27Nb合金的力学性能,分析其对合金组织结构和性能的影响。结果表明:添加微量Er可以细化合金的晶粒,但不改变合金基体的相组成,合金均由B2、α2和O相组成;当Er含量较低时,主要以固溶形式存在于合金中;当Er含量约为0.6%(摩尔分数)时,合金中将析出面心立方结构的富Er相,并弥散分布于基体中,随着Er含量的增加,富Er相尺寸变大且沿晶界聚集,导致合金性能下降。固溶强化和弥散强化是微量Er元素改善合金性能的原因,当添加0.6%Er时,合金具有优良的塑性变形能力。  相似文献   

12.
借助光学显微镜、扫描电镜(SEM)、万能拉伸试验机、电化学工作站和X射线衍射(XRD)等研究了不同含量Er添加对铸态6061铝合金组织和性能的影响。结果表明:当Er添加量为0.2~0.6 mass%时,6061铝合金的晶粒细化效果明显,针状的β-AlFeSi相转变为颗粒状AlFeSiEr相,Er的添加抑制了Mg2Si相析出,并使得其形貌由针状改变为颗粒状,合金的抗拉强度和耐腐蚀性能得到共同提高;当Er添加量超过0.6 mass%时,AlFeSiEr相逐渐粗化为块状,Mg2Si相含量增加,这对6061铝合金的力学性能和耐腐蚀性能产生不利影响。当Er含量为0.6 mass%时,6061铝合金的综合力学性能最佳,其抗拉强度、屈服强度和伸长率分别为161.1 MPa、84.2 MPa和8.47%,此时,合金的氧化膜也更稳定且均匀,表现出较好的耐腐蚀性能。  相似文献   

13.
添加不同量的MgCO_3对AZ81镁合金进行晶粒细化实验,结果表明:MgCO_3对AZ81镁合金细化效果明显,当加入量w(MgCO_3)=1. 2%时,合金晶粒最小;随后继续增加MgCO_3加入量,晶粒又开始变粗大。经X射线衍射发现MgCO_3加入后,合金中出现新的Al4C3相;经计算,Al4C3与α-Mg晶格常数相近,晶粒错配度小,Al4C3成为α-Mg基底的异质形核质点从而细化晶粒。  相似文献   

14.
《铸造技术》2017,(6):1298-1300
向ZK21合金中添加不同含量的稀土元素Er,然后进行挤压和保温热处理,研究Er含量和热处理对合金组织和力学性能的影响。结果表明,稀土Er具有良好的细化晶粒和抑制静态再结晶晶粒长大的作用;随着保温时间的延长,合金的晶粒尺寸增加。当Er添加量为1%时,ZK21合金的强度和塑性最佳。  相似文献   

15.
采用真空熔炼方法制备了不同Er含量的Sn-58Bi钎料合金,研究不同Er添加量对Sn-58Bi钎料合金熔化特性、润湿性、拉伸性能和显微组织的影响。结果表明,Er元素的添加对Sn-58Bi钎料合金的熔点及熔程影响不大。当Er元素的添加量为0.05wt%~0.1wt%时,钎料合金的润湿性提高明显。Er元素添加量为0.1wt%~0.25wt%时,钎料合金的拉伸强度有所提高;钎料合金的伸长率提高明显,合金伸长率可由原15.34%(0wt%Er)提升至50.18%(0.1wt%Er)。添加稀土元素Er,能显著细化Sn-58Bi钎料合金的共晶组织。  相似文献   

16.
新型钛-硼晶粒细化剂对ADC12铝合金组织和性能的影响   总被引:1,自引:0,他引:1  
采用粉末冶金法制备含w(Ti)=50%、w(B)=5%、盐类和少量助熔剂的新型钛-硼细化剂,研究了细化剂加入量和静置时间对ADC12铝合金微观组织结构和力学性能的影响。结果表明,细化剂加入30 min后,粗大树枝晶α-Al组织变得细小,对ADC12铝合金组织具有显著的细化效果,随着静置时间延长,细化效果减弱。加入质量分数为1%的该晶粒细化剂,细化效果最好,ADC12合金的抗拉强度和伸长率分别达到234.75 N/mm2和2.54%。  相似文献   

17.
通过添加稀土Er对A356铝合金进行变质处理,再经过T6热处理后利用金相显微试验、硬度测试和拉伸试验探究稀土Er对A356铝合金的力学性能的影响。结果表明,添加少量的稀土Er可以细化A356铝合金的组织,当稀土的添加量w(Er)=0.15%时,α(Al)由粗大的树枝状转变为细小的块状,硅相形貌也有了明显的改善,合金的力学性能得到了较大的提高,其布氏硬度为101.8 HBS,抗拉伸强度为270 N/mm~2,伸长率达到6.69%。  相似文献   

18.
试验研究单独添加P和复合添加P+Er对Al-20Si合金的变质作用并优化出最佳添加量,在此基础上考察了Cu和Ni对Al-20Si合金室温和300℃高温强度的影响。结果表明:未添加P变质处理的合金中的初晶Si主要呈粗大块状或星状,棱角较为尖锐且分布不均匀,P变质处理的后合金中初晶Si的形貌逐渐转变为颗粒状,尺寸变小的同时均匀度增加;复合添加P+Er变质处理的合金中初晶Si形态变化不大,而共晶Si尺寸明显减小,w(P)=0. 04%、w(Er)=0. 06%复合变质处理Al-20Si合金可以得到最佳变质效果;在Cu含量不变前提下增加Ni含量或者Ni含量不变前提下增加Cu含量,都可以提升Al-20Si合金的室温强度和300℃高温抗拉强度,且Ni元素对提高300℃高温抗拉强度更加显著,Al-20Si合金中Cu和Ni适宜的添加量都为1. 6%(质量分数)。  相似文献   

19.
采用金相显微镜(OM)、扫描电子显微镜(SEM)、差示扫描量热分析(DSC)、X射线衍射(XRD)、拉伸试验机、显微硬度计等分析手段,研究了稀土Er含量对铸态A356铝合金显微组织、拉伸性能和硬度的影响,探讨了Er元素的作用机制。结果表明:不同Er含量A356铝合金的组织都由初生α-Al相和共晶硅组成,添加0. 2%~0. 7%(质量分数,下同)的Er后,A356铝合金的晶粒明显细化,且α-Al晶粒尺寸和二次枝晶间距减小;未添加Er的A356铝合金中共晶硅呈粗大条状或块状,Er改性后的A356铝合金中共晶硅主要呈短棒或颗粒状。随着Er含量的增加,A356铝合金中共晶硅的宽径比先减小后增大,当Er的质量分数为0. 4%时达到最小值; A356铝合金的抗拉强度、硬度和断后伸长率都表现为先升高而后降低的趋势,当Er的质量分数为0. 4%时达到最大值。在A356铝合金中添加一定量的Er,可以起细化晶粒、改善共晶硅相形态、固溶强化和弥散强化的作用,适合的Er元素添加量为0. 4%。  相似文献   

20.
《硬质合金》2017,(4):254-262
采用粉末冶金法制备WC-Co硬质合金,研究了单一添加0%~1.2%(文中含量无特殊说明的均为质量分数)TiN和复合添加不同比例TiN/Cr_3C_2晶粒长大抑制剂对WC-Co硬质合金组织和性能的影响。结果表明:添加TiN后,WC晶粒明显细化且晶粒尺寸分布集中,合金硬度上升。TiN与粘结相中的W和C形成(Ti,W)(C,N)固溶体,起到了细化了WC晶粒的作用,但是由于固溶体本身的脆性和粘结相对其润湿性较差,使合金的强度和韧性下降。TiN单一添加量为0.4%时,合金综合性能最佳,硬度值可达到1 770 HV3,强度值为2 870 MPa,韧性达到10.37 MPa·m~(1/2);复合添加w(TiN)∶w(Cr_3C_2)为1∶3时,合金综合性能最佳,硬度值可达到1 770 HV3,强度值为2 860 MPa,韧性达到10.23 MPa·m~(1/2)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号