首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
针对生物医用Mg-3Zn-0.2Ca的显微组织、力学性能以及生物腐蚀行为,采用X射线衍射(XRD)、光学显微镜(OM)、扫描电镜(SEM)、拉伸实验机、电化学以及浸泡测试方法进行了研究。XRD结果表明Mg-3Zn-0.2Ca合金中的第二相主要为Mg_7Zn_3,Mg_2Zn_3,Mg_4Zn_7等金属间化合物相。相比于铸态,经过56:1挤压比变形后的Mg-3Zn-0.2Ca合金晶粒明显细化,平均晶粒尺寸从119.1μm降到2.5μm,降低了47.6倍。挤压态Mg-3Zn-0.2Ca合金的屈服强度(0.2%TYS)、抗拉强度以及延伸率分别为205,336 MPa和17.85%,电化学以及浸泡测试表明挤压态合金的耐蚀性明显优于铸态Mg-3Zn-0.2Ca合金,其主要归因于晶粒细化。新设计的生物医用Mg-3Zn-0.2Ca合金呈现出了良好的综合力学性能以及生物耐蚀性。  相似文献   

2.
利用XRD、SEM、OM等手段,对不同Ca含量的铸态Mg-5Sn-3Al-2Zn合金的组织、力学性能及断口进行了研究与分析。结果表明,不同Ca含量的Mg-Sn-Al-Zn合金主要由α-Mg、Mg2Sn、CaMgSn、Al2Ca相组成。当Ca含量为1.0%时,合金的室温力学性能最高;当Ca含量达到2.0%时,合金基体中分布有大量粗大针状、棒状的CaMgSn和Al2Ca等相,其力学性能大幅度下降;其断裂机制均为解理和准解理断裂。  相似文献   

3.
生物医用Mg-3Zn-0.2Ca合金的显微组织,力学性能,腐蚀行为通过光学显微镜,扫描电镜,力学测试以及模拟体液浸泡手段进行了研究。X射线衍射结果表明该合金的主要第二相为Mg7Zn3, Mg2Zn3, 和Mg4Zn7的金属间化合物相。经过56:1挤压比后的挤压态Mg-3Zn-0.2Ca合金的晶粒尺寸平均为2.5um,相比铸态的119.1um下降了47.6倍。屈服强度,抗拉强度以及延伸率分别为205MPa, 336MPa 和17.85%。挤压态合金的耐蚀性也明显优于铸态合金,其原因主要为晶粒细化。本文设计的新型生物医用Mg-3Zn-0.2Ca合金呈现出良好的综合力学性能以及耐蚀性。  相似文献   

4.
研究了挤压Mg-4.0Sm-xCa(x=0.5,1.0,1.5,mass fraction%)合金经过200℃等温时效处理后的显微组织、时效硬化行为和力学性能。结果表明,随着Ca的添加,在镁基体中形成针/棒状的Mg2Ca相、块状和颗粒状含Ca元素的Mg_(41)Sm_5相,合金的晶粒被细化、拉伸力学性能得到显著提高。在T5(峰值时效)态下,Mg-4.0Sm-1.0Ca合金具有最细的晶粒,其大小约为5.1μm。随着Ca含量的增加,针/棒状的Mg_2Ca相逐渐增多,当Ca含量达到1.5%时,晶界处含Ca的块状Mg_(41)Sm_5相的量明显减少。在峰值时效态下,Mg-4.0Sm-1.0Ca合金具有最大的HV硬度值(820 MPa)以及最佳的力学性能,其抗拉强度、屈服强度和延伸率分别达到了267 MPa,189 MPa和24%。合金力学性能的提高主要归因于晶粒细化、固溶强化以及Mg2Ca相和Mg_(41)Sm_5相的析出强化。  相似文献   

5.
探究了复合添加微量Sn与Ca对挤压态Mg-0.5Bi基合金的微观组织、力学性能及腐蚀行为的影响。结果表明:挤压态Mg-0.5Bi-0.5Sn-0.5Ca (质量分数,%)合金主要由α-Mg、Mg2Bi2Ca以及Mg2Sn相组成,合金表现出晶粒尺寸均匀分布的完全动态再结晶组织。合金的抗拉强度(UTS)为191 MPa,伸长率(EL)高达31.5%,腐蚀速率(Pi)为0.51 mm/a,极化阻抗(Rp)为707.19Ω·cm2。此外,挤压态合金在腐蚀过程中生成了含Ca以及含Sn的腐蚀产物中间层,从而提升了腐蚀产物层的保护作用,导致析氢速率随着浸泡时间的增加先增大后减小。最后由于腐蚀产物膜的破裂,析氢速率达到了2.43 mL/d。  相似文献   

6.
在氩气保护气氛下熔炼,得到Mg-5Li-xSn(x=0.15,0.25和0.65,质量分数)系列合金。通过光学显微镜、扫描电镜、X射线衍射仪和能谱仪分析合金的显微组织。结果表明,Mg-5Li合金中添加的Sn元素可以起到明显的晶粒细化作用,当Sn含量从0.15%增加到0.65%时,铸态合金的平均晶粒尺寸从556μm细化到345μm,相应的挤压态合金的晶粒从33μm减小到23μm。近似网状的第二相Mg2Sn分布在铸态合金的晶界上,挤压之后,颗粒状的Mg2Sn主要分布在晶粒内部。这些金属间化合物在挤压动态再结晶中可以作为有效的形核质点,从而起到细化晶粒的作用。  相似文献   

7.
利用光学显微镜、X射线衍射仪、扫描电镜、电子背散射衍射、透射电镜、硬度以及力学性能测试等对挤压态和T5处理态的Mg-6Zn-1Mn-4Sn-1.5Nd镁合金的显微组织和力学性能进行研究。研究结果表明:合金铸态的相组成为α(Mg)、Mn、Mg7Zn3、Mg2Sn和MgS nN d相。挤压过程中完成动态再结晶,再结晶晶粒的平均尺寸为7.2μm。T5热处理显著提高挤压态合金的强度。合金的屈服强度和抗拉强度分别增加94 MPa和34 MPa。显微组织分析表明,合金强度的提高主要是由于时效过程中析出高密度的β′1杆状相。  相似文献   

8.
对热处理的挤压态Mg-9Sn-1.5Y-0.4Zr镁合金显微组织与力学性能的影响进行了实验性探究。结果显示热处理对挤压态Mg-9Sn-1.5Y-0.4Zr镁合金显微组织与力学性能具有显著影响。挤压态合金主要由非均匀分布的Mg2Sn相组成。经过495℃,10 h固溶处理之后,大部分Mg2Sn相溶入到基体中。时效处理能大幅改善Mg-9Sn-1.5Y-0.4Zr合金的力学性能,最佳时效工艺为:在250℃条件下时效60 h。实验最终力学性能参数为:维氏硬度HV 890 MPa,极限抗拉强度262 MPa,屈服强度218 MPa,延伸率10.4%。基于实验结果分析,可发现对于经时效处理的挤压态Mg-9Sn-1.5Y-0.4Zr合金,沉淀强化是主要的强化因素(~51.76%)。  相似文献   

9.
研究了挤压Mg-4.0Sm-xCa (x=0.5, 1.0 and 1.5 wt%)合金经过200 oC等温时效处理后的显微组织、时效硬化行为和力学性能。结果表明,随着Ca的添加,在镁基体中形成针/棒状的Mg2Ca相、块状和颗粒状含Ca元素的Mg41Sm5相,合金的晶粒被细化、拉伸力学性能得到显著提高。在 T5(峰值时效)态下,Mg-4.0Sm-1.0Ca合金具有最细的晶粒尺寸,其大小约为 5.1 μm。随着Ca含量的增加,针/棒状的Mg2Ca相逐渐增多,当Ca含量达到1.5 wt%时,晶界处含Ca的块状Mg41Sm5相的量明显减少。在峰值时效态下,Mg-4.0Sm-1.0Ca合金具有最大的硬度值(82 HV)以及最佳的力学性能,其抗拉强度、屈服强度和延伸率分别达到了267 MPa, 189 MPa 和 24%。合金力学性能的提高主要归因于晶粒细化、固溶强化以及Mg2Ca相和Mg41Sm5相的析出强化。  相似文献   

10.
本文对热处理对挤压态Mg-9Sn-1.5Y-0.4Zr镁合金显微组织与力学性能的影响进行了实验性探究。结果显示热处理对挤压态Mg-9Sn-1.5Y-0.4Zr镁合金显微组织与力学性能具有显著影响。挤压态合金主要由非均匀分布的Mg2Sn相组成。经过495℃,10h固溶处理之后,大部分Mg2Sn相溶入到基体中。时效处理能大幅改善Mg-9Sn-1.5Y-0.4Zr合金的力学性能,最佳时效工艺为:在250℃条件下时效60h。实验最终力学性能参数为:维氏硬度89HV,极限抗拉强度262MPa,屈服强度218MPa,延伸率10.4%。基于实验结果分析,可以发现对于经时效处理的挤压态Mg-9Sn-1.5Y-0.4Zr合金,沉淀强化是主要的强化因素(~51.76%)。  相似文献   

11.
基于模糊PID控制技术进行了Mg-4Al-2Sn-0.15Ti镁合金的挤压试验,并进行了试样挤压组织与力学性能的测试与分析。结果表明:采用模糊PID控制挤压的Mg-4Al-2Sn-0.15Ti镁合金晶粒细小,组织分布较为均匀,平均晶粒尺寸11μm,合金由α-Mg基体、Mg_(17)Al_(12)相和Mg_2Sn相组成,合金抗拉强度298 MPa,屈服强度235 MPa,断后伸长率9.2%,具有较佳的力学性能。  相似文献   

12.
利用光学显微镜、X射线衍射和扫描电镜等对挤压态和时效态Mg-6Zn-1Mn-4Sn和Mg-6Zn-1Mn-4Sn-0.5Y镁合金的微观组织和力学性能进行研究。结果表明:与ZMT614镁合金相比,添加Y元素后,ZMT614-0.5Y晶粒得到细化,综合力学性能得到提高。Mg-6Zn-1Mn-4Sn-0.5Y合金的相组成为α-Mg、Mg Zn2、Mn、Mg2Sn和MgS n Y相。经过T6热处理后,合金的抗拉强度和屈服强度明显得到提高,伸长率明显被降低。理论计算表明,在挤压态合金中,细晶强化和固溶强化产生重要的作用,而在T6热处理态合金中,析出强化产生决定作用。  相似文献   

13.
采用OM、SEM、XRD对铸态和等通道角挤压(ECAP)变形后Mg-4.5Zn-1Ca(wt%)合金的微观组织进行了表征。通过电化学工作站和浸泡法评估了ECAP变形前后合金在模拟体液(SBF)中的腐蚀性能。结果表明,铸态Mg-4.5Zn-1Ca合金显微组织由α-Mg基体及分布在晶界处和晶粒内的Ca2Mg6Zn3相组成,平均晶粒尺寸为86μm。经ECAP变形后,合金的晶粒尺寸得到显著细化,经6道次ECAP变形后的平均晶粒尺寸为5μm。随着ECAP变形道次的增加,第二相在镁基体中的分布更加均匀、弥散。ECAP变形后合金更容易发生腐蚀,挤压道次越多,合金的自腐蚀电位越负,自腐蚀电流越大,即耐蚀性越差。经6道次ECAP变形后合金的自腐蚀电位最负(-1.42 V),自腐蚀电流最大(407.38μA/cm~2),耐蚀性最差。  相似文献   

14.
探讨了等通道转角挤压对生物医用合金材料Mg-4Zn-1Mn-0.2Ca合金显微组织和腐蚀性能的影响。通过对挤压态Mg-4Zn-1Mn-0.2Ca合金进行共8道次的等通道转角挤压变形,获得了不同状态的合金,并对3种不同状态的试样进行了显微组织观察。8道次变形后合金的晶粒尺寸最小为10.52μm,且组织更均匀。采用浸泡实验测得了合金在模拟体液中的腐蚀速率,其中8道次变形的合金的腐蚀速率最低,为1.897 mm·y-1,并通过电化学实验进一步分析了等通道扭转挤压变形后合金腐蚀行为的变化。结果表明:等通道转角挤压变形后挤压态Mg-4Zn-1Mn-0.2Ca镁合金的晶粒逐渐细化且组织更加均匀,随着挤压道次的增加,合金在模拟体液中的局部阻抗逐渐提高,耐蚀性得到了改善。  相似文献   

15.
贾征  喻兵  付丽  乐启炽 《表面技术》2023,52(4):233-242
目的 提高挤压态Mg-3Sn-1Ca合金的耐腐蚀性能。方法 通过合金熔炼制备了Mg-3Sn-Ca(TX31)和Mg-3Sn-Ca-Zn(TXZ311)两种挤压态合金,利用XRD、金相、SEM、EDS、EBSD、析氢、电化学极化曲线和阻抗谱,分析了TX31和TXZ311两种合金的微观组织及耐腐蚀性能。结果 XRD和EDS结果表明,挤压态TX31和TXZ311两种合金中第二相均为CaMgSn相,TXZ311合金中由于Zn的添加,CaMgSn相增加且分布更加均匀。金相和EBSD结果表明,Zn的添加可以提高TX31合金的动态再结晶程度和{0002}基面织构强度,改善TX31合金中组织的不均匀性。从极化曲线上可得,腐蚀电位和腐蚀电流分别为-1.57V和6.95×10-5 A。添加Zn后,腐蚀电位升高(-1.49 V),腐蚀电流减小(1.02×10-5 A),表明合金耐蚀性提高。对比两种合金阻抗谱可发现,TXZ311合金具有比TX31合金更大的容抗弧,表明其表面的电荷转移电阻和表面膜的电阻最高,动态腐蚀过程中氧化产物膜具有较好的稳定性,有效阻碍了α-Mg...  相似文献   

16.
利用光学显微镜、扫描电子显微镜、X射线衍射分析仪和电子材料试验机分别研究了铸态和挤压态Mg-8Sn-4Zn-2Al合金的微观组织和力学性能。结果表明,铸态Mg-8Sn-4Zn-2Al合金主要由!-Mg相、在晶界处分布的网状共晶相(!-Mg+Mg2Sn)以及一些在晶内分布游离第二相颗粒(Mg32(Al,Zn)49)组成,平均二次枝晶间距为16.12μm,挤压(温度300℃,挤压速度0.1 mm/s,挤压比16)后,合金主要由动态再结晶晶粒和破碎的第二相形成的挤压条带组成,合金的平均晶粒尺寸为4.71μm。挤压态合金的屈服强度,抗拉强度和伸长率分别为196 N/mm~2,311 N/mm~2和18.3%。挤压态合金的强度提高是晶界强化、弥散强化和织构强化共同作用的结果。  相似文献   

17.
借助光学显微镜对添加不同稀土Ce含量的挤压态Mg-6Al-0.5Y合金的显微组织做了分析.结果表明:挤压态Mg-6Al-0.5Y合金添加稀土Ce后,晶粒组织明显细化,晶粒尺寸由14μm减小到7μm.  相似文献   

18.
旨在探讨等通道转角挤压(equal-channel-angular-pressed,ECAP)对生物医用Mg-3Zn-0.2Ca合金的显微组织以及腐蚀行为的影响。对铸态Mg-3Zn-0.2Ca合金进行了1,2,4道次的剪切挤压变形。采用光学显微组织观察、X射线反射法、电化学等手段研究了挤压道次对镁合金显微组织、织构以及腐蚀行为的影响,也特别关注了ECAP对试样的不同截面方向的显微组织演变以及模拟体液(simulatedbodyfluid,SBF)电化学腐蚀行为的影响。结果表明:ECAP变形后铸态Mg-3Zn-0.2Ca镁合金晶粒逐渐细化,变形后镁合金呈现出与挤压方向呈一定角度的002面剪切织构;随着挤压道次增加,合金的耐蚀性先增加后降低。等通道转角挤压对合金耐蚀性的影响是晶粒尺寸、晶体缺陷和织构变化的综合效果;ECAP变形后合金不同截面方向呈现不同的耐蚀性,垂直于挤压方向截面的耐蚀性优于另2个方向截面的耐蚀性。  相似文献   

19.
研究了Zn元素对均匀化态Mg-3Sn-Ca合金耐腐蚀性能的影响。通过XRD、金相、SEM、失重、析氢、电化学极化曲线和阻抗谱分析了Mg-3Sn-Ca(TX31)和Mg-3Sn-Ca-Zn(TXZ311)2种合金的耐蚀性能。结果表明,Mg-3Sn-Ca合金中主要由CaMgSn及Mg2Sn相组成,加入Zn元素后晶粒得到显著细化,第二相体积分数增加并呈弥散分布,并有Mg2Ca相析出。而Zn的添加可显著提高Mg-3Sn-Ca合金的耐蚀性能,这主要归因于TXZ311合金具有更细小的晶粒尺寸以及均匀密集分布的CaMgSn相,使合金在腐蚀过程中形成的钝化膜更加均匀。因此,TXZ311合金的耐蚀性远高于TX31合金。  相似文献   

20.
研究挤压比对Mg-6Sn-2Zn-1Ca (TZX621,质量分数,%)合金显微组织和力学性能的影响。结果发现,挤压态TZX621合金中发生不完全再结晶;当挤压比从6增大至16,未再结晶晶粒的相对含量和再结晶晶粒的平均尺寸均降低,基面织构强度也随之弱化。热挤压过程中,粗大Ca Mg Sn相发生破碎,细小Mg2Sn相则在α-Mg基体中析出。挤压比为16时,合金的屈服强度、抗拉强度和伸长率达到226.9 MPa、295.6 MPa和18.1%,与挤压比为6时相比分别提高了36.0%、17.7%和13.5%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号