首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
对12MnNiVR压力容器钢进行热轧和950℃淬火,并对其分别在600、630、660和690℃下进行回火处理。并通过光学显微镜、扫描电镜、透射电镜、拉伸试验机和冲击试验机对试验钢的进行微观组织形貌观察和力学性能检测。结果表明:淬火后试验钢组织由马氏体、贝氏体及少量残留奥氏体组成。回火后组织主要是回火马氏体以及回火索氏体。随回火温度的升高,部分回火马氏体消失,形成回火索氏体组织。试验钢强度在较低的回火温度时下降缓慢,较高回火温度下强度急剧下降而伸长率则在不断增加。试验钢690℃回火时,获得较优的综合力学性能,屈服强度、抗拉强度、伸长率和-40℃下的冲击吸收能量分别达到605 MPa,670 MPa,25. 9%,113. 7 J。  相似文献   

2.
对自行设计的矿山球磨机衬板用中合金马氏体耐磨铸钢在900、950、1000、1050、1100 ℃淬火后回火,研究了淬火温度对试验钢组织和性能的影响。试验结果表明,经过淬火、回火处理后的试验钢显微组织由板条马氏体和残留奥氏体组成。当保持回火温度250 ℃不变,随着淬火温度的升高,马氏体组织先变细密后又变粗大,抗拉强度、冲击性能及残留奥氏体含量均呈现先增大后减小的趋势,在1050 ℃淬火取得最优综合力学性能:抗拉强度1623 MPa,冲击性能14.4 J,此时试验钢的强化机理为孪晶马氏体和高密度位错缠结。通过冲击磨损试验解释了试验钢在该工艺下的磨损行为与磨损机理。  相似文献   

3.
采用显微组织观察、拉伸试验、冲击试验和硬度测试等方法,研究了4Cr5Mo2NiV模具钢淬火、回火工艺对其显微组织与力学性能的影响。结果表明:淬火态4Cr5Mo2NiV钢组织主要为板条状、针状马氏体以及少量碳化物。随着淬火温度的升高,4Cr5Mo2NiV钢硬度先升高后降低。1010℃淬火,4Cr5Mo2NiV钢硬度达到最大值58.3 HRC。当回火温度在400~650℃,4Cr5Mo2NiV钢回火后出现二次硬化现象。4Cr5Mo2NiV钢最佳淬、回火工艺为1010℃淬火+600℃回火,此工艺下,4Cr5Mo2NiV钢的综合性能最佳。  相似文献   

4.
对轧制态75Cr1锯片用钢在800~880 ℃进行油淬并在400~480 ℃进行回火,采用光学显微镜、万能力学性能试验机、冲击试验机及洛氏硬度计分别分析其显微组织、力学性能变化规律。结果表明,淬火试样组织为马氏体+残留奥氏体;随着淬火温度的升高,马氏体组织不断粗化;硬度随淬火温度的升高由800 ℃的59 HRC逐渐提高到880 ℃的68 HRC。随着回火温度的升高,试样组织由淬火马氏体转化为回火马氏体、回火马氏体+回火索氏体组织;强度、硬度逐步降低,而塑性、韧性相应提高。最佳热处理工艺为840 ℃(保温20 min)淬火+460 ℃(保温60 min)回火。  相似文献   

5.
对一种新型耐磨铸钢进行了不同温度的淬火和回火处理。淬火温度分别为850、880和910℃,回火温度分别为200、250和300℃。利用金相显微镜(OM)和扫描电子显微镜(SEM)观察并分析了试验钢热处理后的显微组织,同时测试了试验钢的洛氏硬度、显微硬度、耐磨性能和拉伸性能。结果表明:经不同温度淬火后,试验钢的组织均为板条马氏体;随着淬火温度的升高,试验钢的硬度先升高后降低,880℃淬火的钢硬度最高。经880℃淬火、不同温度回火的试验钢的组织均为回火马氏体;随着回火温度的升高,试验钢的硬度先增加后减小,抗拉强度逐渐升高,磨损量先减小后增加。经880℃淬火、250℃回火的试验钢的综合力学性能最佳。  相似文献   

6.
采用SEM、XRD、TEM和Thermo-Calc软件计算等手段研究了两相区回火温度对0.02C-7Mn钢的组织和性能变化的影响。结果表明,淬火后试验钢组织以淬火马氏体为主,伴有极少量的残留奥氏体;两相区回火后,基体组织以回火马氏体为主,出现逆转变奥氏体,空冷后转变为残留奥氏体。随着回火温度的升高,残留奥氏体的含量逐渐增加,在650 ℃回火后到达峰值为18.78%;与此同时出现了6.57%的ε-马氏体。两相区回火后,试验钢的抗拉强度均有下降,但是屈服强度有不同程度的升高,这归因于回火过程中位错密度的下降以及弥散第二相的析出。另外,ε-马氏体的存在不仅迅速降低了屈服强度,而且还损害了韧性。在600 ℃回火后,试验钢具有优异的综合力学性能(横向:抗拉强度为984 MPa、屈服强度为973 MPa,-40 ℃冲击吸收能量为163 J,纵向:抗拉强度为947 MPa、屈服强度为919 MPa,-40 ℃冲击吸收能量为186 J),满足Q690用钢的力学性能需求。  相似文献   

7.
采用箱式电阻炉对试验钢进行了三种不同淬火温度的淬火+高温回火热处理,并对试样的显微组织进行了观察,对拉伸和冲击力学性能进行了检测。结果表明,在两相区淬火的试样的显微组织以多边形铁素体+岛状马氏体为主,随淬火温度升高,铁素体含量逐渐降低,马氏体含量逐渐增加,晶粒逐渐细化;回火组织以回火马氏体+铁素体为主,与淬火组织相比,铁素体明显粗化,马氏体含量下降,马氏体板条特征逐渐消失,铁素体晶界有较多碳化物析出;随淬火温度升高,回火后钢板屈服强度、伸长率和低温冲击韧性均逐渐升高,抗拉强度先提高后略有下降;试验钢经800℃淬火+500℃回火能获得优良的综合力学性能。  相似文献   

8.
张蒙  吴光亮 《金属热处理》2023,(10):157-162
对NM500耐磨钢进行940℃淬火+两相区淬火+回火(QLT)热处理,研究了两相区淬火温度(820~880℃)和回火温度(200~600℃)对试验钢显微组织和力学性能的影响。结果表明,在两相区淬火温度从820℃升至880℃的过程中,试验钢为马氏体和铁素体双相组织,且铁素体含量逐渐降低,马氏体含量增多,试验钢的强度和硬度提高,-40℃冲击吸收能量从67 J降低至33 J。在870℃两相区淬火,200~600℃范围内回火时,随回火温度的升高,板条马氏体和残留奥氏体逐渐分解,碳化物形态和分布发生变化;试验钢抗拉强度和硬度逐渐降低,低温冲击性能先降低后升高,试验钢达到良好强韧性匹配的回火温度区间为200~250℃。  相似文献   

9.
通过SEM、室温拉伸试验分析了20CrNi2Mo钢经900~1200℃淬火+200 ℃回火后的显微组织及力学性能。结果表明:随淬火温度的升高,20CrNi2Mo钢原奥氏体晶粒尺寸增加,强度和硬度降低,塑性有所增加。不同淬火温度下,马氏体板条间均会形成一层很薄的残留奥氏体薄膜,而且随淬火温度的提高,薄膜的分岔和弥散分布特征更加明显。拉伸断裂方式为韧性断裂,且放射区韧窝尺寸随淬火温度升高而增大。  相似文献   

10.
通过光学显微镜(OM)、透射电镜(TEM)、拉伸试验机和冲击试验机等手段研究了两相区淬火温度对一次淬火+回火和二次淬火+回火态工程机械用Q690钢显微组织和力学性能的影响,并对比分析了直接淬火+回火态试样的力学性能。结果表明,一次淬火和二次淬火态试样的光学显微组织都为铁素体+马氏体,且随着两相区温度的升高,一次淬火态和二次淬火态试样中马氏体含量都呈现为逐渐升高的趋势。一次淬火+回火态试样光学显微组织为多边形铁素体和回火马氏体,二次淬火+回火态试样的光学显微组织为针状铁素体和回火马氏体。一次淬火+回火和二次淬火+回火态试样的强度略低于直接淬火+回火态,但是-20℃冲击吸收能量明显提高、屈强比显著减小。在两相区温度为760℃时,一次淬火+回火和二次淬火+回火态工程机械用Q690钢具有较高的强度、低屈强比和高冲击韧性。  相似文献   

11.
通过真空电弧熔炼方法制备了Fe-13Cr-3.5Ni不锈钢,并系统研究了不同热处理工艺对其微观组织以及硬度的影响。结果表明:熔炼态Fe-13Cr-3.5Ni不锈钢为典型的板条状马氏体组织;经过不同温度固溶和回火处理(600 ℃)后,其组织结构由板条状马氏体和少量残留奥氏体组成,残留奥氏体含量随着固溶温度的升高先增加后减少,而硬度值先降低后升高,硬度最低值为101.5 HRB;在1000 ℃淬火并在不同温度回火后其组织结构由回火板条状马氏体以及残留奥氏体组成,在650 ℃以下回火时,随着回火温度的升高奥氏体含量逐渐增多,当回火温度达700 ℃时,残留奥氏体含量下降,其洛氏硬度值随着回火温度的升高先降低后升高,其硬度值在99~107 HRB范围内。  相似文献   

12.
通过Gleeble-1500热模拟试验机测量了26CrMo4钢的相变温度,然后对其进行910 ℃水淬和400~740 ℃回火处理,并用光学显微镜、拉伸试验、硬度试验和冲击试验研究了热轧态和淬火、回火后的显微组织和力学性能。结果表明:26CrMo4钢具有优良的淬透性,910 ℃水淬可得到原奥氏体晶粒细小均匀的马氏体组织。26CrMo4钢的强度和硬度随着回火温度的提高而降低,回火温度在400~600 ℃、600~640 ℃和640~730 ℃之间时,抗拉强度随回火温度升高而下降的速率分别为1.685、1.500和2.822 MPa/℃。26CrMo4钢的冲击性能随着回火温度的升高而提高,700 ℃回火时0 ℃冲击吸收能量达到227 J,但继续提高回火温度至730 ℃时0 ℃冲击吸收能量基本保持不变。26CrMo4钢640 ℃和700 ℃回火后均具有较好的低温冲击性能,-70 ℃冲击吸收能量仍分别可达81 J和110 J。  相似文献   

13.
利用洛氏硬度计及场发射扫描电镜等研究了奥氏体化温度和回火温度对热锻模具用钢5Cr5Mo2V组织和性能的影响。结果表明:试验钢经过不同温度的淬火和回火处理后,组织均为回火马氏体+残留奥氏体+碳化物。当5Cr5Mo2V钢在920~1030 ℃淬火时,随淬火温度升高硬度值增加并于1030 ℃达到最大值62.53 HRC,之后硬度值趋于稳定,且在1030 ℃淬火时晶粒较为细小,超过1030 ℃淬火晶粒开始粗化;试验钢在480~550 ℃回火时,硬度值随回火温度升高逐渐增加,并于550 ℃出现二次硬化峰值,但在此温度下试验钢的冲击性能为最低,此后随回火温度升高冲击性能逐渐增加,当回火温度为600 ℃时,试验钢在维持较高硬度(49 HRC)的同时,冲击吸收能量可达21 J,故5Cr5Mo2V钢的最佳热处理工艺为:1030 ℃淬火30 min后油冷,随后在600 ℃回火(2 h)2次空冷。  相似文献   

14.
研究了1050 ℃正火+550~700 ℃回火处理对00Cr13Ni5Mo超级马氏体不锈钢中厚板显微组织和力学性能的影响。结果表明,在1050 ℃正火后,随着回火温度的升高,板条状马氏体逐步分解,产生了逆变奥氏体组织,600 ℃回火时其含量最高,之后随着温度的升高逆变奥氏体的含量逐步降低;试验钢的强度、硬度及屈强比均随回火温度的升高先降低后升高。650 ℃回火时,可得到细密的回火索氏体+逆变奥氏体的复相组织,试验钢具有较低的屈强比及良好的冲击性能。  相似文献   

15.
以一种屈服强度为1100 MPa的高强度工程机械用钢为对象,研究了再加热淬火温度(880~980 ℃)和回火温度(200~650 ℃)对Q1100钢显微组织和力学性能的影响。结果表明,淬火温度从880 ℃升高至980 ℃,试验钢的平均奥氏体晶粒尺寸从8 μm增加到24 μm,试验钢的屈服强度和抗拉强度都呈先升高后降低的趋势,并在920 ℃时达到最大,而-40 ℃冲击性能则随之持续降低。试验钢经920 ℃淬火+200~650 ℃回火后,随着回火温度的提高,试验钢的马氏体板条合并,板条形貌逐渐模糊,碳化物数量和形貌也随之发生改变,强度大幅下降,塑性和韧性则先降低后升高。试验钢最佳的热处理工艺为920 ℃淬火+200~250 ℃回火。  相似文献   

16.
使用直读光谱仪、扫描电镜、X射线衍射仪和力学试验设备,研究了Ni含量对淬回火态40CrNiMo钢的显微组织、残留奥氏体含量、硬度、室温抗拉强度和室温冲击性能的影响。结果表明,随着Ni含量从1.346%增加至1.618%,40CrNiMo钢的显微组织、残留奥氏体含量无明显变化,但α-Fe的晶格畸变增大;在不同回火温度下,试验钢的硬度均提高5~10 HV;450 ℃回火的高Ni含量钢的抗拉强度比低Ni含量钢高78 MPa,抗拉强度的提高幅度则随着回火温度的升高而减小;然而在残留奥氏体含量几乎不变的条件下,Ni含量增加反而会使450、500 ℃回火后钢的冲击吸收能量降低约50%。  相似文献   

17.
采用万能拉伸试验机、冲击试验机、光学显微镜、XRD、SEM和TEM等对高氮不锈轴承钢Cronidur 30不同回火温度下的显微组织和力学性能进行了研究和分析。结果表明:高氮不锈轴承钢Cronidur 30在150~500 ℃回火时的显微组织为回火马氏体+碳氮化物+残留奥氏体,高于550 ℃回火后基体逐渐转变为回火索氏体,同时析出相逐渐聚集、长大;随着回火温度的升高,强度和硬度总体上呈现先下降后升高再下降的过程,而冲击性能反之,在450 ℃回火时,碳化物M23C6和氮化物Cr2N析出明显,此时产生二次硬化现象,其抗拉强度可达2133 MPa。400 ℃回火试样发现有极少量富Cr-Fe-Mo的析出相(σ相),显著降低其冲击性能,500 ℃回火时残留奥氏体分解、转变导致冲击性能略有降低。  相似文献   

18.
通过扫描电镜观察、拉伸及低温冲击试验,研究了不同淬火工艺对含1%(质量分数)Ni的中锰钢组织和性能的影响。结果表明,随着淬火温度升高,试验钢的屈服强度和抗拉强度先增大后减小,随后再逐渐增大,低温冲击吸收能量具有相同变化趋势;中锰钢的最优调质工艺为900 ℃淬火后于600 ℃回火,其屈服强度、抗拉强度及伸长率分别能达到560 MPa、640 MPa及21.8%,-50 ℃ 冲击吸收能量达到270 J,获得了良好的综合力学性能。调质态试验钢在不同淬火温度下均获得了铁素体和回火马氏体组织,随着淬火温度升高,马氏体比例增加,晶粒尺寸逐渐减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号