首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
对具有片层状初始组织的Ti600合金的热变形行为进行了研究。变形温度范围为800~960℃,应变速率范围为10-3~1 s-1。随后提出了应变硬化指数(n)来表征流动软化和加工硬化之间的竞争。并且通过分析流变曲线和观察显微组织研究了该合金的软化行为。结果表明,变形参数对Ti600合金的流变行为有显著影响。当变形超过峰值应变之后,n值逐渐降低,动态软化过程开始占主导地位。微观组织分析表明:热变形过程中,α相的弯曲、破碎、动态回复和动态再结晶行为是造成Ti600合金软化的主要原因。最后基于实验数据,建立了3种本构模型,分别是应变补偿Arrhenius模型、Hensel-Spittel模型和修正的Arrhenius模型,来表征Ti600合金的流变行为。将3种模型预测的流变应力与实验结果进行比较,并计算其相关系数值和平均相对误差值来评估模型的准确性。3种模型的相关系数值分别为0.965、0.989和0.997,平均相对误差值分别为12.86%,9.74%和3.26%。这些结果表明,这3种模型都可以描述Ti600合金的流变行为,而修正的Arrhenius模型具有最高的预测精度。  相似文献   

2.
通过热压缩模拟试验研究了Al-xMg-2.8Zn合金在变形温度为300~490 ℃、应变速率为0.001~5 s-1条件下的热变形行为。修正了应变-应力曲线中由于变形热引起的流动软化现象后,利用Arrhenius本构方程和热加工图预测并分析了Al-xMg-8Zn合金的热变形行为。结果表明,随着Mg含量的增加,应变速率的升高,或者变形温度的降低,流变应力随之增大。结合热加工图和微观组织观察,确定了合金的最佳热加工参数范围。通过对比发现,随着Mg含量的增加,最佳热变形温度和应变速率范围均变大,变形失稳区域向高温和低应变速率区域扩展。  相似文献   

3.
为了模拟高温合金GH4169的热轧复合工艺,采用MSS-200热模拟机对高温合金GH4169进行热压缩复合模拟,变形温度为900~1100 ℃,应变速率为1~10 s-1。通过应力应变曲线建立了描述GH4169高温合金压缩变形行为的Arrhenius型本构方程和热加工图,计算相应的热变形活化能Q和应力指数n分别为320.33 kJ·mol-1和4.1573。此外,采用光学显微镜(OM)和电子背散射衍射(EBSD)技术观察了结合界面。结果表明:结合界面主要受变形工艺参数的影响,在1100 ℃/10 s-1变形条件时,结合界面几乎看不见。  相似文献   

4.
为了建立合理的能够描述Ti/Ni/Ti层状复合过程的本构方程,在Gleeble-3500热机械模拟机上对Ti/Ni/Ti层状复合材料在变形温度为550~850 ℃,应变速率为0.001~1 s-1,变形量为65%的复合过程中热变形行为进行研究。采用4种本构模型:改进的Johnson-Cook(MJC)模型、应变补偿Arrhenius(SCA)模型、多元非线性回归(DMNR)模型和改进的井上胜郎(MIS)模型对层状复合材料的高温流变行为进行预测。同时,对4种模型的实验值和预测值进行了比较。此外,比较了平均绝对相对误差(AARE)、相关系数(R)和相对误差的准确性,以确定这4种模型的合理性。结果表明,MJC、DMNR和MIS模型都不适合描述Ti/Ni/Ti层状复合材料的流变行为,而SCA模型除了在某些特定变形条件外,其预测值与实验值吻合较好。  相似文献   

5.
采用等温压缩实验,对FeCrNiMn等原子比高熵合金在900~1050 ℃和0.001~1 s-1区间内的热变形行为进行了研究。结果表明,合金的初始组织主要由等轴面心立方晶粒和细小体心立方相颗粒构成。合金的流变曲线呈现典型的单峰形,随着温度的提高和应变速率的降低,峰值应力显著下降。基于双曲正弦方程建立了预测流变应力的本构模型,同时计算了合金的应力指数和表观变形激活能,分别为3.13和405 kJ/mol。基于动态材料模型建立了合金在不同应变量下的热加工图,发现所有热加工图中均未出现变形失稳区,说明合金具有优异的变形能力。通过与变形组织的对比发现,变形组织与能量耗散因子值密切相关。当能量耗散因子值为28%时,再结晶体积分数仅为17.6%;当能量耗散因子值为38%时,再结晶体积分数则提高至37.5%。通过热加工图确定了合金的2个最佳热变形参数区间:900~940 ℃/10-3~10-1.3 s-1和960~1050 ℃/10-3~10-0.3 s-1。  相似文献   

6.
采用等温压缩分析了Fe0.25Cr0.25Ni0.25Mn0.25中熵合金在900~1050 ℃、0.001~1 s-1应变速率范围内的流变行为。结果表明,热变形以动态再结晶为主,与其他低堆垛层错能的合金一样,流变曲线呈单峰形状。建立了本构模型来描述整个变形过程,分析了加工硬化行为和动态软化过程。利用Kocks-Mecking图发现,在加工硬化阶段,合金的硬化速率随应力呈线性降低,因此应力-应变行为可以用传统的位错密度模型来描述。同时,采用经典的JMAK方程描述由动态再结晶引起的软化过程。此外,对本构模型进行了进一步的修改,减少了参数的数量,简化了回归分析。所提出的半物理模型不仅可以准确地预测应变范围外的应力-应变行为,而且可用于其他低层错能合金。  相似文献   

7.
为了研究Ti-55511合金在近β区域的热流动行为,在温度973–1223 K、应变速率0.001–1 s-1条件下,利用Gleeble.3500热模拟试验机进行了等温压缩试验。对实验获得的流动应力曲线进行了修正,降低了摩擦与绝热温升等因素对流动应力的影响。采用考虑材料参数演化的修正Arrhenius模型和反向传播人工神经网络(BP-ANN)模型对钛合金热变形过程中的流动应力进行预测,并通过统计分析对预测模型精度进行了评估。将2种预测模型扩展的应力、应变数据植入有限元,模拟了热压缩实验过程。结果表明,Ti-55511合金的流变应力与应变速率呈正相关,与温度呈负相关,合金软化机制主要为再结晶。修正后的Arrhenius模型和BP-ANN模型都能描述流体的流动行为,BP-ANN模型在α+β区域的拟合精度高于修正后的Arrhenius模型,而在β区域的拟合精度低于修正后的Arrhenius模型。  相似文献   

8.
采用原始JC模型、修正JC模型和应变补偿Arrhenius方程,描述了Incoloy825合金在不同温度(950~1150 °C)和应变速率(1~10 s-1)下经摩擦和温升修正后的应力-应变曲线。结果表明,修正后曲线具有明显的动态再结晶特征。与原始JC模型和修正的JC模型相比,Arrhenius应变补偿模型更适合于描述Incoloy825合金热变形过程中的应力应变行为。温度和应变速率对特殊晶界的演变有显著影响。特殊晶界长度分数与动态再结晶分数呈正相关。与冷轧后退火处理工艺相比,热变形工艺调控的特殊晶界长度分数较低,热变形工艺不适合用来调整特殊晶界分数,其原因是在热变形过程中动态再结晶的大量形核造成较小的晶粒团簇。  相似文献   

9.
对Ni60Ti40合金高温变形行为及变形机理进行了研究。通过计算获得了该合金在不同变形工艺下的应变速率敏感性指数m和变形激活能Q的变化规律,分别构建了Prasad、Gegel、Malas、Murty和Semiatin等不同失稳判据下的动态材料模型热加工图及包含位错数量的变形机理图。应用热加工图理论分析了该合金的适合成形加工区和流变失稳区,运用变形机理图预测了该合金高温变形过程中基于柏氏矢量补偿的晶粒尺寸和基于模量补偿的流变应力下的位错演变规律及高温变形机理。  相似文献   

10.
基于变应变速率敏感性指数m值的方法对TA15合金超塑性进行了研究,在1053~1223 K温度范围内进行了超塑性拉伸实验。结果表明:TA15合金的延伸率为580%~1922%。微观组织分析表明合金变形过程中晶粒随温度升高而逐渐长大,但仍保持等轴状,在1223 K时发生αβ相转变,超塑性能严重下降。与恒应变速率法相比较,该方法大幅度提高了TA15合金的超塑性能。此外,超塑性变形过程中,力学性能和微观组织演变特征与Ashby-Verrall模型较吻合,因此推断出TA15合金基于变m值法超塑性变形的主要机制是扩散蠕变协调的晶界滑移。  相似文献   

11.
在温度为250-400℃、应变速率为0.1-10 s-1条件下进行了热压缩试验,研究了双相Mg-Li合金的热加工性能、显微组织演变和相组成。建立了整合加工和α-Mg相含量的最佳热加工窗口。结果表明,所建立的Arrhenius本构模型能够准确预测软化过程中的应力流动行为。通过对合金显微组织的观察,发现动态回复(DRV)、动态再结晶(DRX)和α-Mg相变是主要的软化机制。α-Mg相以球化和α-Mg相内析出的形式转变为β-Li相,尤其是在300℃以上相变现象显著。同时,DRX行为容易在β-Li相中发生,而在α-Mg相中会被抑制。基于动态材料模型和微观结构分析,获得最佳加工窗口:温度300-350℃/0.1-1 s-1和温度250℃/0.1 s-1。  相似文献   

12.
采用Gleeble-3800热模拟试验机对NiCoFeCrAl系高熵合金进行单道次热压缩实验研究,根据峰值应力构建了NiCoFeCrAl系高熵合金Arrhenius本构关系模型,运用Prasad、Murty、Gegel和Malas四种失稳准则,构建了不同失稳判据下的DMM热加工图,并对不同失稳判据在该合金热变形过程中的适用范围进行了分析与比较,确定了该合金的最佳热加工区间为温度为980~1010 ℃+应变速率为0.01~0.001 s-1和温度范围为1050~1100 ℃+应变速率为0.01~0.1 s-1,平均功率耗散率大于36%。借助EBSD显微组织分析,确定了热变形的软化机制随变形量的增大由动态回复向动态再结晶转变。  相似文献   

13.
基于正交试验结果,对近β锻+固溶时效工艺参数进行了显著性分析,并详细讨论了工艺参数对TA15钛合金显微组织的影响及合理的工艺参数,以获得性能优异的三态组织。结果表明:变形温度、固溶温度和固溶时间是3个最为重要的工艺参数,分别对等轴αp相的体积分数和直径、片层αs相的体积分数及片层αs相的厚度影响最大。较合理的TA15钛合金处理工艺参数为970 ℃/0.1 s-1/60%变形程度/水淬+930 ℃/1.5 h/空冷+550 ℃/5 h/空冷。  相似文献   

14.
通过热压缩实验研究了ZL270LF铝合金在变形量为70%,温度为300~550 ℃,应变速率为 0.01~10 s-1范围的热变形行为,建立了流变应力本构方程模型,绘制出了二维热加工图,确定了最佳热加工区域,采用电子背散射衍射(EBSD)和透射电子显微镜(TEM)技术研究了该合金的组织演变规律。结果表明:ZL270LF铝合金的流变应力随变形温度的升高和应变速率的降低而降低,热变形激活能为309.05 kJ/mol,最优热加工区为温度470~530 ℃、应变速率为0.01~1 s-1。该合金在热变形过程中存在3种不同的DRX机制,即连续动态再结晶(CDRX)、不连续动态再结晶(DDRX)和几何动态再结晶(GDRX),其中CDRX是ZL270LF铝合金动态再结晶的主要机制。  相似文献   

15.
通过热模拟压缩实验研究了GH2907合金在变形温度为950~1100℃、应变速率为0.01~10s-1、变形量为60%条件下的热变形行为,流变应力随着变形温度的升高或应变速率的降低而显著降低;根据Arrhenius方程和Zener-Hollomon参数,计算了热变形激活能Q,建立了GH2907合金的热变形本构方程;根据动态材料模型,确定了GH2907合金在不同应变下的功率耗散图,功率耗散效率η较高的区域位于温度为1050~1100℃,应变速率为0.01~0.03s-1范围,在该变形区域内组织发生了明显的动态再结晶现象;基于Preased失稳判据,绘制了GH2907合金在不同应变下的热加工图,流变失稳区位于高温高应变速率区域,即温度为970~1100℃,应变速率为0.6~10s-1范围,在该变形区域内动态再结晶晶粒沿着绝热剪切带和局部流动分布。根据GH2907合金热加工图及微观组织分析得到适宜的加工区域是温度为1050~1100℃,应变速率为0.01~0.03s-1范围。  相似文献   

16.
基于变形温度250~400 ℃和应变速率0.001~1 s-1条件下的铸态AZ80镁合金的热压缩试验数据,建立了基于应力位错关系和动态再结晶动力学的物理基本构模型以及前馈反向传播算法的人工神经网络(ANN)模型来预测AZ80镁合金的热变形行为。采用相关系数(R)、平均绝对相对误差(AARE)、相对误差(RE)3种统计学指标来验证2种模型的预测精度。结果表明,2种模型均可以准确预测AZ80镁合金的热变形行为。其中,ANN模型预测的应力值与实验数据更为吻合,其R和AARE分别为0.9991和2.02%,而物理基本构模型预测的R和AARE分别为0.9936和4.52%。ANN模型较好的预测能力归功于它擅长处理复杂的非线性关系,而物理基本构模型的预测能力是基于模型具有一定的物理意义,模型参数的确定充分考虑了热变形过程中的加工硬化(WH)、动态回复(DRV)和动态再结晶(DRX)的热动力学机制。最后,对这2种本构模型的优缺点及适用范围进行了比较讨论。  相似文献   

17.
通过2个电子参数(结合次数Bot和d轨道能级Mdt)提出了新设计的α型钛(α-Ti)合金。新设计合金Ti-5Al-4Zr-3.6Sn、改性合金Ti-5Al-3Sn-1.9Zr和参考合金Ti-5Al-2.5Sn具有相同的Bot值(3.847)以及不同的Mdt值(2.430,2.426,2.422)。测试了3种α-Ti合金的极限抗拉伸强度(σUTS)、断裂应变(?f)和热盐腐蚀性能。3种α-Ti合金均采用冷坩埚悬浮熔炼技术进行制备。结果表明,3种合金样品均具有均匀的微观结构。在3种α-Ti合金中测量到的α单相晶粒尺寸约为600 μm。Ti-5Al-4Zr-3.6Sn合金的σUTS?f值为801 MPa和16%,Ti-5Al-3Sn-1.9Zr合金的σUTS?f值为708 MPa和15%,Ti-5Al-2.5Sn合金的σUTS?f值为603 MPa和15%。热盐腐蚀测试进行28.8 ks后显示Ti-5Al-4Zr-3.6Sn、Ti-5Al-3Sn-1.9Zr和Ti-5Al-2.5Sn合金的失重率为2.61%、2.83%和3.10%。σUTS?f和耐热盐腐蚀结果表明,新设计合金Ti-5Al-4Zr-3.6Sn是一种有实际应用潜力的钛合金材料。  相似文献   

18.
为探究γ/α2相界面对TiAl合金在轰击过程中的变形机制和轰击后力学性能的影响,通过分子动力学来模拟超音速微粒轰击双相TiAl合金的过程。结果表明:γ/α2不同厚度比模型的冲击变形机制不同,变形主要集中在γ相和界面处。随着γ相厚度的减小,与相界面接触的位错首先被界面处的失配位错网络吸收,然后在相界面处成核,最终穿过相界面进入α2相。冲击过程中产生的位错以Shockley位错为主,试样中形成了不完全层错四面体。冲击之后分别使用单轴拉伸模拟和纳米压痕模拟,测定了试样的强度和表面硬度。拉伸过程中相变、孪晶和层错是不同厚度比试样的主要变形机制。与其他试样相比,厚度比为1:3的双相TiAl合金在冲击后具有最高的屈服强度、硬度和弹性模量。  相似文献   

19.
研究了316LN奥氏体不锈钢在1050~1200 ℃、应变速率0.1,1和50 s-1下的压缩变形行为,分析了变形温度和应变速率对热流曲线的影响。基于位错密度理论,建立了316LN钢的热变形本构模型,并揭示了316LN钢的软化机理。结果表明,在高温低应变速率(小于0.1 s-1)条件下,动态再结晶(DRX)为主导软化机理;在高温高应变速率(大于1 s-1)条件下,动态回复(DRV)为主导软化机理;在高温及应变速率为0.1和1 s-1条件下,DRV和DRX共同作用。构建的模型可以很好地预测316LN钢的热变形行为,其Pearson相关系数为0.9956,平均相对误差绝对值为3.07%,为一个精确的本构模型。  相似文献   

20.
本文借助Gleeble-3800热模拟试验机系统地研究了铸态粗晶Ti-5553合金在温度700 ℃~1100 ℃、应变速率为0.001 s-1~10 s-1条件下的高温变形行为。研究结果表明合金的流变应力对变形温度和速率都有强敏感性,流变软化过程也随变形参数的改变呈现出不同的模式。通过经典的动力学模型,建立了合金高温变形的本构关系和激活能分布图,进一步基于动态材料模型构建了合金的热加工图并实现了对不同加工区间变形机制的识别。合金在低温区(700 ℃)和高速率区( 1 s-1)均展现出失稳变形的特征,包括外部开裂、绝热剪切带、局部流变等机制,在实际加工中应对这些加工区域进行规避。合金在800 ℃及中低速率( 0.1 s-1)变形下的主导机制为α相的动态析出,在中高温(900 ℃-1100 ℃)及中低速率变形下的主导机制为动态回复与动态再结晶的结合。此外,合金在高温较低应变速率(1100 ℃/0.01 s-1)条件的变形中表现出大范围动态再结晶的行为特点并伴随稳定的流变软化,因此此条件附近的参数区间被认定为该合金的最优加工窗口,应在实际加工中给予优先考虑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号