首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
含铌钼钢中微合金碳氮化物沉淀析出及其强化机制   总被引:9,自引:4,他引:9  
利用物理化学相分析法、透射电镜、能谱分析和X射线衍射分析了两种热轧态的含铌钼低碳钢中微合金碳氮化物析出相的成分、形貌以及粒度分布等特征,结果表明,含铌钼低碳钢中钼可与铌一起析出,形成具有NaCl型面心立方结构的碳氮化铌钼析出相,且0.081Nb-0.14Mo钢和0.17Nb-0.12Mo钢的MC析出相中钼与铌的原子比分别为0.41和0.22。在这两种钢的MC析出相中小于10nm的碳氮化铌钼的质量分数分别为58.4%和66.1%,这些纳米颗粒呈弥散分布,其沉淀强化增量分别为179.3MPa和257.7MPa。并对钼铌复合析出的机制进行了讨论。  相似文献   

2.
随着汽车行业的发展,先进高强钢的研究与应用越来越广泛。设计了低C,以Cr、Mn、Si为基本元素,复合添加Ti、Nb、V、Mo等元素的复相(CP)钢化学成分;通过控轧控冷工艺,充分发挥了马氏体和贝氏体相变强化及合金元素的析出强化、细晶强化的复合作用,成功获得了屈服强度大于680 MPa,抗拉强度大于780 MPa,伸长率大于10%的热轧CP钢。研究了不同终轧温度、卷取温度下钢板的组织形貌和析出物大小对其力学性能和扩孔性能的影响,得到了最佳终轧温度为890 ℃,卷取温度为490 ℃。在此工艺下,试制钢板的组织形貌和析出物大小得到了良好的配合,其扩孔率达到47%,扩孔性能最优。  相似文献   

3.
A new Ti–V–Mo complex microalloyed hot-rolled high-strength steel sheet was developed by controlling a thermo-mechanical controlled processing(TMCP) schedule, in particular with variants in coiling temperature. The effects of coiling temperature(CT) on various hardening mechanisms and mechanical properties of Ti–V–Mo complex microalloyed high-strength low-alloy steels were investigated. The results revealed that the steels are mainly strengthened by a combined effect of ferrite grain refinement hardening and precipitation hardening. The variation in simulated coiling temperature causes a significant difference in strength, which is mainly attributed to different precipitation hardening increment contributions. When the CT is 600 C, the experimental steel has the best mechanical properties: ultimate tensile strength(UTS) 1000 MPa, yield strength(YS) 955 MPa and elongation(EL) 17%. Moreover, about 82 wt% of the total precipitates are nano-sized carbide particles with diameter of 1–10 nm, which is randomly dispersed in the ferrite matrix.The nano-sized carbide particles led to a strong precipitation hardening increment up to 310 MPa.  相似文献   

4.
Multiphase steels utilising composite strengthening may be further strengthened via grain refinement or precipitation by the addition of microalloying elements. In this study a Nb microalloyed steel comprising martensite, bainite and retained austenite has been studied. By means of transmission electron microscopy (TEM) we have investigated the size distribution and the structural properties of (Nb, Ti)N and NbC precipitates, their occurrence in the various steel phases, and their relationship with the Fe matrix. (Nb, Ti)N precipitates were found in ferrite, martensite, and bainite, while NbC precipitates were found only in ferrite. All NbC precipitates were found to be small (5–20 nm in size) and to have a face centred cubic (fcc) crystal structure with lattice parameter a = 4.36 ± 0.05 Å. In contrast, the (Nb, Ti)N precipitates were found to have a broader size range (5–150 nm) and to have a fcc crystal structure with lattice parameter a = 8.09 ± 0.05 Å. While the NbC precipitates were found to be randomly oriented, the (Nb, Ti)N precipitates have a well-defined Nishiyama–Wasserman orientation relationship with the ferrite matrix. An analysis of the lattice mismatch suggests that the latter precipitates have a high potential for effective strengthening. Density functional theory calculations were performed for various stoichiometries of NbCx and NbxTiyNz phases and the comparison with experimental data indicates that both the carbides and nitrides are deficient in C and N content.  相似文献   

5.
通过实验,采用低成本Ti微合金元素进行强化,获得了抗拉强度745~760MPa,下屈服强度640~655MPa,伸长率为23. 0%~23. 5%的热轧钢板。同时,通过调整热轧工艺,获得了终冷温度与热轧板强度的关系。此外,研究了轧制过程不同阶段析出相的种类、分布以及析出量的变化情况。结果表明,钢板屈服强度、抗拉强度与其终冷温度基本呈线性关系,随终冷温度的降低,屈服强度和抗拉强度均明显提高。析出相的定量分析结果表明,在粗轧结束时,Ti的析出率接近50%,在精轧结束时,Ti的析出率接近60%。在700℃等温卷取后,Ti的析出率超过95%。降低卷取温度到650、600℃时,Ti的析出率分别降低到87. 5%、75. 2%。如果700℃终冷后采用空冷方式冷却,Ti的析出率最低,降低到只有63. 3%,与精轧结束时析出量相近。  相似文献   

6.
对00Cr12N iNbTi铁素体不锈钢进行加热、粗轧、精轧及卷取过程的模拟实验,应用扫描电镜、透射电镜、化学相分析及热模拟等方法对试样中析出物进行了定性定量分析。结果表明:加热到1140℃,保温0、45和90 m in后,粒子主要为TiN,Ti的固溶率为66.3%,N的固溶率为1.3%;从粗轧到精轧,微米级的小颗粒减少,大颗粒增多,颗粒平均尺寸由1.8μm增大到3.2μm,有聚集长大现象;在热轧过程中微米级粒子形貌为方形或球形,基本保持稳定;纳米级的(Nb,Ti)C颗粒在精轧阶段开始析出,卷取保温及缓冷至室温过程中大量析出,多分布于晶界及晶内处,在较高温度下卷取会析出较多的纳米级(Nb,Ti)C颗粒。  相似文献   

7.
There is an increasing demand for ultrahigh-strength ferritic steels strengthened by nanoprecipitates. Improvement of the precipitation strengthening response requires an understanding of the nanoscale precipitation mechanisms. In this study, the synergistic effects of Cu and Ni on nanoscale precipitation and mechanical properties of ferritic steels were thoroughly investigated, and new steels with ultrahigh strength and high ductility have been developed. Our results indicate that Ni effectively increases the number density of Cu-rich nanoprecipitates by more than an order of magnitude, leading to a substantial increase in yield strength. It appears that Ni decreases both the strain energy for nucleation and the interfacial energy between the nucleus and the matrix, thereby decreasing the critical energy for nucleation of Cu-rich nanoprecipitates. Cu and Ni are also found to be beneficial to grain-size refinement, resulting from lowering the austenite-to-ferrite transformation temperature, as determined from thermodynamic calculations. In addition, the strengthening mechanisms of Cu and Ni were quantitatively evaluated in terms of precipitation strengthening, grain refinement strengthening and solid-solution strengthening. The current findings shed light on the composition–microstructure–property relationships in nanoprecipitate-strengthened ferritic steels.  相似文献   

8.
采用Gleeble热模拟试验机研究了微合金元素Nb对高Ti耐候钢奥氏体连续冷却转变行为的影响,通过光学显微镜(OM)、透射电镜(TEM)以及硬度测试等手段比较了0.050%Nb和无Nb试验钢连续冷却转变后显微组织和硬度的变化。结果表明,Nb能抑制铁素体相变,促进贝氏体相变。冷却速度由5 ℃/s提高到10 ℃/s,两种试验钢的晶粒细化效果均最显著,无Nb钢和0.050%Nb钢硬度分别增加了22 HV0.2和25 HV0.2。冷却速度为40 ℃/s时,无Nb试验钢中析出物主要为6~13 nm球形Ti(C, N)复合析出物;含Nb试验钢中主要为5~12 nm球形(Ti, Nb)(C, N)和10~15 nm方形(Ti, Nb)(C, N)复合析出物,含Nb试验钢析出物较多,因此析出强化作用更强。在高Ti耐候钢中,Nb产生的晶粒细化作用并不显著。在相同冷速下,0.050%Nb试验钢的硬度略高于无Nb试验钢,最大差值仅为11 HV0.2。  相似文献   

9.
Structural and microstructural changes that arise in the course of the heat treatment of Cr–Ni–Mo austenitic stainless steels with different concentrations of titanium and phosphorus have been studied. It has been found that the alloying with phosphorus decreases the lattice parameter of these steels. The phosphorus contribution to this effect is 0.015 ± 0.002 Å/at %. Aging at a temperature of 670 K for about 20 h leads to the precipitation of dispersed needle-like particles, which are most likely to be iron phosphides. In the temperature range of 700–800 K, in austenitic steels, the atomic separation of the solid solution occurs, the intensity of which decreases upon alloying with titanium or phosphorus at concentrations of 1.0 and 0.1 wt %, respectively. At higher temperatures (about 950 K), the formed precipitates of the Ni3Ti (γ') phase increase in size to 7–10 nm.  相似文献   

10.
通过两种成分非调质CT80连续油管用钢现场生产板卷工艺组织性能对比,分析了冷却速度、卷取温度、Mo和Nb元素含量等工艺参数对实验钢组织性能的影响。结果表明:当冷却速度由52℃/s提高到69℃/s后,铁素体形态为针状铁素体,实验钢屈服强度提高25 MPa;抗拉强度提高30 MPa。实验钢在530℃卷取时,组织中出现了3%的珠光体组织,抗拉强度低于性能指标10 MPa。而在400℃卷取时,组织中出现了3%的块状马氏体组织,使得屈服强度低于性能指标20 MPa;抗拉强度提高到690MPa。Mo元素含量提高,促进针状铁素体转变,实验钢淬透性提高,有利于获得M/A岛组织,保证获得高强度低屈强比性能。Nb元素含量提高,细晶强化和析出强化作用更明显。  相似文献   

11.
《Acta Materialia》2001,49(5):785-794
Strain induced precipitation is a key phenomenon that controls the microstructure evolution during the finish rolling stages of microalloyed steels. Extensive research has shown that the precipitation of Nb(CN) delays the onset of recrystallisation. This paper presents a model to describe the precipitation kinetics during isothermal holding following high temperature deformation in Nb-containing steels. The model is based on the assumption that heterogeneous nucleation of precipitates on dislocations and enhanced coarsening due to pipe diffusion are responsible behind the accelerated kinetics observed in strain induced precipitation. Results show a very good agreement between reported experimental observations and predictions of the present model for precipitate size and volume fraction evolution.  相似文献   

12.
Microalloyed steels with increased strength and ductility are of considerable interest for use in the ‘as-hotrolled’ condition. However, there is a lack of information on their microstructural characteristics and mechanical properties. Seven different microalloyed steels with variable Nb and C content were evaluated in this work. First, characterization of the microstructure by optical and scanning and transmission electron microscopy was performed. Different microstructural constituents and grain size distributions were observed, and three different groups of precipitates were identified. For all steels, tensile tests were performed and ductile-to-brittle transition temperatures were determined. Finally, the complex interplay between microstructural features and mechanical properties was analyzed to determine structure-property relations for the steels under evaluation.  相似文献   

13.
低碳微合金钢中Nb、V、Ti碳氮化物的回溶研究   总被引:1,自引:0,他引:1  
采用透射电镜和X射线光谱技术,研究了低碳微合金钢中Nb、V、Ti的碳氮化物在不同温度保温1 h后的回溶行为.结果表明,低碳微合金钢中存在尺寸明显不同的两类析出,其中颗粒尺寸较大的在80 nm以上;这种颗粒的心部是(Nb,V,Ti)(C,N)相,而颗粒边缘为(Nb,Ti)(C,N)相;颗粒尺寸较小的在20 nm以下,其类型为(Nb,Ti)(C,N).两类析出物中Nb与Ti的原子比均随回溶温度的升高而减小.  相似文献   

14.
The secondary phases of the steels have significant effects on the microstructure and mechanical properties, making controlling these secondary phases important. The control of MnS inclusions and AlN precipitates in a N-alloyed high-Mn twin-induced plastic cryogenic steel via solution treatment was investigated with several different techniques including microstructural characterization, 298 K tensile testing, and 77 K impact testing. The solutionizing temperature(ST)increased from 1323 to 1573 K, where the elongated MnS inclusions and large-sized AlN precipitates became spheroidized and dissolved. The aspect ratio of the MnS inclusions decreased as the ST increased and the number density increased. The impact toughness of the steels showed anisotropy and low impact energy values, due to the elongated MnS inclusions and large-sized AIN precipitates. The anisotropy was eliminated by spheroidizing the MnS inclusions. The impact energy was improved by dissolving the large-sized AlN precipitates during the solution treatment. The austenite grain size increased when the dissolution of the AlN precipitate increased, but the effect of the grain size on the yield strength, toughness, and the strength–ductility balance was weak.  相似文献   

15.
By using isothermal double hit compression tests and applying the 2% offset method, a new model was developed to predict the microstructural evolution of Nb-bearing steels at temperatures above and below the start temperature of strain-induced precipitation (Tp). The Tp was developed as a function of true strain, initial austenite grain size and the Nb content. The activation energy of static recrystallization (Qrex) was expressed as a function of the content of different alloy elements. It was found that Nb played the most important role in increasing the value of Qrex, The microstructural observations and measurements confirmed the validity of the model developed in the present investigation.  相似文献   

16.
Nb和Cr对冷轧低碳低硅双相钢组织性能的影响   总被引:2,自引:0,他引:2  
研究了在不同双相处理工艺条件下加Nb(0.033%)和加Cr(0.44%)两种低碳低硅冷轧双相钢的组织演变规律和性能特点。分析了合金元素Cr和Nb对双相组织中马氏体体积分数、马氏体形态和铁素体晶粒尺寸的影响。结果表明,Nb的作用主要是通过NbC粒子的析出阻碍再结晶晶粒的长大,从而在同样较低温度热处理工艺条件下,加Nb双相钢中的铁素体晶粒较细。随着处理温度的升高,当相变先于再结晶发生时,NbC对细化晶粒的作用不明显,因而加Nb和加Cr钢具有相近的铁素体晶粒尺寸。Cr提高奥氏体形成温度,导致双相处理时奥氏体的体积分数以及淬火后马氏体的体积分数的减少。力学性能分析表明,在同样的双相处理条件下,加Nb钢具有较高的强度和较低的屈强比;而加Cr钢则表现出较好的塑性。  相似文献   

17.
The effect of ageing on mechanical properties and microstructural characteristics of a precipitation hardenable Al 7075 alloy subjected to rolling at liquid nitrogen temperature and room temperature are has been investigated in the present work employing hardness measurements, tensile test, XRD, DSC, and TEM. The solution-treated bulk Al 7075 alloy was subjected to cryorolling and room temperature rolling to refine grain structures and subsequently ageing treatment to simultaneously improve the strength and ductility. The solution treatment combined with cryorolling up to a true rolling strain of 2.3 followed by low temperature ageing at 100 °C for 45 h has been found to be the optimum processing condition to obtain fine grained microstructure with improved tensile strength (642 MPa) and good tensile ductility (9.5%) in the Al 7075 alloy. The combined effect of suppression of dynamic recovery, partial grain refinement, partial recovery, solid solution strengthening, dislocation hardening, and precipitation hardening are responsible for the significant improvement strength-ductility combination in the cryorolled Al 7075 alloy subjected to peak ageing treatment. The cryorolled and room temperature rolled Al 7075 alloy, upon subjecting to peak ageing treatment, have shown higher strength and ductility in the former than the latter. It is due to presence of high density of nanosized precipitates in the peak aged cryorolled sample.  相似文献   

18.
Different microstructural features were obtained under various heat treatment conditions, which provided insight into the factors controlling the critical strength in a polycrystalline Ni–Co-based disk superalloy (TMW-4M3 alloy) with a two-phase structure. The contribution of each microstructural feature, namely, the grain size, annealing twin boundary and distribution of γ′ precipitates, to the total strength was analyzed quantitatively by measuring the Vickers hardness over the nanometer to micron size range. Grain boundary strengthening decreased to nearly zero with increasing solution heat treatment temperature, while the secondary and tertiary γ′ precipitation hardening increased. Therefore, there is an optimum combination of microstructural features for achieving the highest tensile strength in such superalloys, the key factors being the temperature and time used for the solution heat treatment and the subsequent aging treatment. A method for determining the optimum factors for TMW-4M3 is proposed.  相似文献   

19.
综合分析了Nb、V、Ti3种微合金元素在奥氏体和铁素体中的溶解、析出规律以及对再结晶的抑制作用,根据其不同的强化机理,在CSP生产线上采用不同的加热温度、各道次轧制温度和压下量、层流冷却速度与卷取温度制度,获得了最佳的细晶强化和析出强化效果。  相似文献   

20.
Fe–Al–Mn–C alloy systems are low-density austenite-based steels that show excellent mechanical properties. After aging such steels at adequate temperatures for adequate time, nano-scale precipitates such as κ-carbide form, which have profound effects on the mechanical properties. Therefore, it is important to predict the amount and size of the generated κ-carbide precipitates in order to control the mechanical properties of low-density steels. In this study, the microstructure and mechanical properties of aged low-density austenitic steel were characterized. Thermo-kinetic simulations of the aging process were used to predict the size and phase fraction of κ-carbide after different aging periods, and these results were validated by comparison with experimental data derived from dark-field transmission electron microscopy images. Based on these results, models for precipitation strengthening based on different mechanisms were assessed. The measured increase in the strength of aged specimens was compared with that calculated from the models to determine the exact precipitation strengthening mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号