首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
针对48%体积比SiCp/Al复合材料卫星专用输出轴的超精密加工难题,采用ELID精密磨削技术对其进行了工艺实验研究。首先,通过建立切入磨粒磨削模型,得到了48%体积比SiCp/Al复合材料的磨削机理及影响因素。然后探究了不同电火花参数对砂轮修整形貌的影响,并采用极差分析探究了各因素对工件磨削质量影响程度的大小。研究表明,当砂轮转速为1500r/min,进给量0.25μm,进给速度0.9m/min,电解电流10A,占空比60%时,磨削质量最好,得到了表面粗糙度Ra0.096μm,圆柱度0.85μm的48%体积比SiCp/Al复合材料输出轴精密磨削表面。  相似文献   

2.
SiCp/Al复合材料具有优异的性能,在航天航空、光学行业、汽车工业等高科技领域得到了广泛应用,但它在塑性和硬度之间差距巨大,使得超精密加工显得非常困难。建立超声铣削动力学模型,采用单因素法检测分析了SiCp/Al复合材料在不同主轴转速、铣削速度和铣削深度下的表面粗糙度与表面形貌,建模仿真了纵扭复合超声振动刀刃铣削轨迹,得到了影响加工表面质量规律及机制。研究发现主轴转速为3000 r/min、铣削速度为180 m/min时,表面粗糙度值最小;材料表面质量随铣削深度的增加而下降。为SiCp/Al复合材料铣削加工提供了合理工艺参数,提高了加工效率,降低了刀具磨损,延长了刀具使用寿命。  相似文献   

3.
KDP晶体加工中工艺参数的选择会直接影响工件的表面质量。为了获得最优的工艺参数组合,文章基于IBM SPSS Statistics 19.0软件对实验过程进行正交设计,并对试验结果进行单因变量多因素方差分析,得到了各因素对表面粗糙度的影响强弱顺序,优化出了最佳工艺参数组合,并进行KDP晶体的切削实验验证。实验结果表明:各因素对表面粗糙度影响的强弱顺序为进给量、主轴转速、背吃刀量、刀具圆弧半径;最佳的工艺参数组合为刀具圆弧半径r=9mm,进给量f=26μm/r,背吃刀量ap=17μm,转速n=300r/min;利用优化后的工艺参数进行KDP晶体切削实验,得到表面粗糙度值为Ra=0.011μm的光滑表面,获得了理想的加工效果。  相似文献   

4.
通过单因素试验并结合响应曲面分析法,重点分析超声振动辅助电解磨削Hastelloy X内孔加工中主轴转速、超声振幅及磨头目数对孔内壁表面粗糙度的影响规律.结果表明:在选取的优化工艺参数范围内,超声振幅对超声辅助电解磨削表面粗糙度的影响最大,磨头目数次之,主轴转速最小.通过参数优化,在主轴转速10836 r/min、磨头目数1000、超声振幅3.3μm的条件下,可得到内壁表面粗糙度为Ra0.25μm的小孔,这为进一步优化复合加工参数及改善表面质量提供了依据.  相似文献   

5.
针对第三代单晶高温合金DD9磨削烧伤问题,设计三因素五水平实验,从表面形貌、显微硬度和显微组织等角度出发,研究磨削工艺参数对烧伤的影响规律。结果表明:当工件进给速度小于等于250 mm/min时,磨削表面粗糙度Ra在0.8μm左右小幅度变化,表面质量较好;当工件进给速度大于250 mm/min,磨削深度超过1.0 mm后,磨削区域温度急剧上升,磨削纹路被破坏,出现涂覆、凹坑等磨削缺陷,工件表面发生烧伤;DD9合金缓进给磨削工件表面及表层均表现为加工硬化,显微硬度为400~600 HV,硬化层深度在50~110μm,塑性变形层厚度为1~10μm。推荐的DD9磨削工艺参数组合为:砂轮线速度vs=20 m/s,进给速度vw=250 mm/min,磨削深度ap=0.6 mm。  相似文献   

6.
为分析车削参数对已加工表面粗糙度、已加工表面形貌、残余应力的影响规律,针对高温合金GH4169设计正交车削试验,通过有限元仿真建立三维车削模型。结果表明:影响表面粗糙度的主次因素依次为进给量、切削速度、切削深度;影响残余应力的主次因素依次为进给量、切削深度、切削速度;确定在试验参数范围内最佳表面粗糙度和残余应力的参数组合分别为vc=55 m/min、f=0.1 mm/r、ap=0.3 mm和vc=60 m/min、f=0.2 mm/r、ap=0.25 mm。  相似文献   

7.
针对航天用SiC反射镜的低加工效率、表面质量差等难题,采用超声振动辅助磨削技术对其进行工艺实验研究。首先,通过选用树脂结合剂金刚石杯型砂轮并采取栅线式磨削研究不同工艺参数对磨削效率的影响关系。然后采取螺旋式磨削进行正交实验探究超声振幅、进给速度、砂轮转速、磨削深度对表面粗糙度的影响,并采用极差法分析探究各因素对工件磨削质量影响程度的大小。研究结果表明:当超声振幅5μm,进给速度80mm/min,砂轮转速6000r/min,磨削深度2μm时可获得表面粗糙度Ra97nm的已加工表面。  相似文献   

8.
为研究超声振动辅助铣磨加工(ultrasonic vibration assisted grinding,UAG)中各加工参数对CFRP加工工件表面粗糙度与形貌的影响,开展了转速、每齿进给量、径向切深的正交试验,并对粗糙度随每齿进给量和径向切深的变化趋势进行了分析。试验结果表明:转速、每齿进给量、径向切深中对粗糙度影响最大的参数为径向切深,影响最小的参数为转速;在转速8000r/min,径向切深200μm条件下,每齿进给量fz从5μm增加到8μm时,UAG加工方式下的工件表面粗糙度值增加了20.61%。在转速8000r/min,每齿进给量8μm条件下,径向切深ae从250μm增加到400μm时,UAG加工方式下的工件表面粗糙度值增加了27%。  相似文献   

9.
针对GT35动压马达轴精密加工精度难以保证、效率低、成本高的难题,开展马达轴精密磨削加工工艺研究。通过开展不同结合剂,不同粒度、浓度的金刚石砂轮磨削对比试验,研究不同砂轮参数对工件形状精度、表面质量、比磨削能等的影响规律,设计超硬磨料砂轮;通过正交试验,确定影响轴精密磨削表面粗糙度、圆度、圆柱度的最优工艺参数;采用最优磨削参数对20件马达轴开展了磨削加工验证试验。研究得到:当工件转速304 r/min、进给速度0.003m/min、进给量1μm时,获得最优的马达轴圆度0.11μm、圆柱度0.34μm、粗糙度Ra0.041μm的合格工件。  相似文献   

10.
本文建立了SiCp/Al复合材料的二维实体模型,基于压痕断裂力学的方法,研究了压痕深度的变化对SiCp/Al复合材料磨削加工去除机理的影响。结果表明:随着压痕深度的增加,压头下方SiC颗粒的第一主应力逐渐变大,Al基体的von Mises等效应力也逐渐变大。当压痕深度大于等于0.15μm时,压头下方会形成塑形变形区;压痕深度大于等于0.292μm时,SiC颗粒会由于拉应力的作用而产生径向裂纹;当压痕深度超过0.34μm时,Al基体由于局部被压溃而影响SiCp/Al复合材料延性去除机理。  相似文献   

11.
针对SiCp/Al材料传统研磨方法加工困难,研磨工具磨损快,加工后难以获得高质量表面等问题,采用超声振动研磨加工方法可以显著改善其加工效果。通过对单磨粒的超声振动轨迹进行分析,得出其运动轨迹为空间椭圆形,可实现磨粒与工件间歇性的接触加工;采用树脂结合剂金刚石磨头对SiC体积分数为40%的SiCp/Al材料进行超声振动研磨加工试验,在不同的主轴转速n、进给速度v和研磨深度ap以及磨料粒度d下,利用单因素试验法对工件进行研磨,检测加工后工件表面粗糙度,得出各工艺参数对工件表面粗糙度Sa值的影响规律。结果表明:超声振动研磨后的工件表面粗糙度Sa值相较于普通研磨后的79 nm下降为45 nm;超声振动研磨后工件表面粗糙度随n的增大先减小后增大,转速为1 800 r/min时,粗糙度值最小;工件表面粗糙度随v和ap的增大而增大,随着d的减小而减小。并得出试验参数内的最优参数组合为:n=1 800 r/min,v=5 mm/min,ap=1 μm,d=4.5 μm。   相似文献   

12.
永磁场磁力研磨TC11钛合金的实验研究   总被引:4,自引:4,他引:0  
肖阳  孙友松  陈光忠 《表面技术》2017,46(2):229-234
目的解决钛合金机械加工后表面质量差的难题。方法采用磁力研磨工艺对TC11钛合金进行了表面光整加工。以表面粗糙度为主要评价指标,研究了磁力研磨工艺参数对钛合金表面质量的影响,并对工艺参数进行了优化。采用优化后的工艺参数对钛合金进行了表面光整加工,研究了磁力研磨工艺对钛合金金相组织的影响。结果当加工间隙为3 mm时,研磨压力适宜,加工后工件表面粗糙度值最小。采用粒径为100目的磨粒使工件表面研磨加工后纹理更细,表面粗糙度值最低。提高主轴转速,工件表面材料去除率增加,当主轴转速为1500 r/min时,加工后工件表面粗糙度值最小。对比工件加工前后的金相组织,加工后试样表面组织晶粒变细,晶界增多,工件表面应力状态由张应力转变为压应力。结论实验确定了较优的工艺参数组合,即:加工间隙为3 mm,磨粒粒径为100目,主轴转速为1500 r/min。采用永磁场磁力研磨工艺,能够大幅降低TC11钛合金表面粗糙度,并使钛合金表面组织得到改善。  相似文献   

13.
目的解决铝合金手机外壳传统抛光工艺中存在的抛光效率低等问题。方法采用聚氨酯弹性砂轮对6061铝合金进行了磨削加工,使用正交试验研究了磨料粒度、进给速度、切削深度、砂轮线速度对加工表面粗糙度及材料去除率的影响。试验中使用折线走刀方式进行加工,可减轻磨料分布不均带来的影响。使用白光干涉仪测量了加工后表面的粗糙度,通过计算单位时间内工件的质量变化得出了去除率,并通过对结果的综合优化得出了最优工艺参数。结果在选取的16组磨削工艺参数中,可获得的最低表面粗糙度为44.87 nm,最大去除率为0.329 g/min。对表面粗糙度影响最大的因素为磨料粒度,影响最小的因素为进给速度;对材料去除率影响最大的因素为切削深度,影响最小的为进给速度。经过综合优化,最佳工艺参数组合为:砂轮600#,转速2000 r/min,切削深度0.04 mm,进给速度20 mm/min。结论弹性聚氨酯砂轮应用于铝合金磨削可提高加工表面质量,可简化工艺流程,节省备料和安装调整时间,从而提高效率。  相似文献   

14.
本文使用SiC砂轮和金刚石砂轮对颗粒尺寸大、体积分数高的SiCp/Al复合材料进行了平面磨削实验,研究了磨削深度和工件进给速度对磨削力的影响,并利用扫描电镜对已加工表面形貌进行了研究.结果表明:使用SiC砂轮加工时,磨削力随磨削深度的增加而增大;工件进给速度较低时,磨削力随工件进给速度增加而减小,当工件进给速度超过12...  相似文献   

15.
在不同磨削深度、砂轮转速和进给速度组合下,研究微粉金刚石钎焊砂轮磨削氧化铝陶瓷过程的磨削力及工件的表面粗糙度的变化规律,并筛选出低磨削力和低工件表面粗糙度的加工工艺参数。试验结果表明:在微粉金刚石钎焊砂轮的磨削过程中,氧化铝陶瓷主要通过脆性断裂的方式去除;随着磨削深度、进给速度的增加,砂轮在进给方向和切深方向的力以及工件表面粗糙度都上升;随着砂轮转速的增加,进给方向和切深方向的力以及工件表面粗糙度都下降。试验获得的低磨削力和低工件表面粗糙度精密加工工艺参数分别为:磨削深度为1.0 μm,进给速度为12 mm/min,砂轮转速为24 000 r/min和磨削深度为1.0 μm,进给速度为1 mm/min,砂轮转速为20 000 r/min。低磨削力磨削时,微粉金刚石钎焊砂轮受到的X方向和Z方向的磨削力分别为0.15 N和0.72 N;精密加工后的氧化铝陶瓷的表面粗糙度值可达0.438 μm。   相似文献   

16.
目的针对传统粉末热压成形细粒度金刚石磨具存在颗粒团聚、磨削碳化硅陶瓷容易在表面产生较深划痕的问题,提出一种基于冷冻-解冻凝胶成形的细粒度金刚石磨具,用于精密磨削碳化硅陶瓷,并研究其加工工艺。方法制备聚乙烯醇-酚醛树脂复合凝胶胶水,将金刚石和填料在凝胶胶水中剪切分散,得到的浆料浇筑在模具中,在–20℃低温条件下反复冷冻,形成胶体,再经干燥、烧结,得到粒度为2.5μm的细粒度金刚石磨削磨具。采用制备的金刚石凝胶磨具磨削碳化硅平面反射镜,对比不同磨具转速、进给速度、磨削深度工艺条件下的表面磨削质量。结果在低温条件下,聚乙烯醇-酚醛树脂分子链发生了物理交联,形成凝胶体,凝胶结合剂结合强度高,且分布均匀,所制备的凝胶磨具强度高于热压磨具,该方法可以解决传统粉料压制成形方法容易出现物相团聚、微观结构不一致的问题。磨削结果显示,当磨削进给速度为0.008 mm/min、磨具转速为1450 r/min、磨削深度为0.016 mm、转台转速为60 r/min时,获得了表面粗糙度Ra低于3.5 nm的镜面磨削效果,表面质量好于热压磨具磨削效果,3个?100 mm区域平面度PV值均小于0.5μm。结论采用聚乙烯醇-酚醛树脂复合凝胶成功制备了细粒度金刚石磨削磨具,通过优化磨削工艺参数,为碳化硅平面反射镜镜面加工提供了一种新的加工工艺。  相似文献   

17.
用小直径砂轮超声振动磨削和普通磨削加工SiC陶瓷零件,对比研究砂轮线速度、工件进给速度、磨削深度和超声振幅对其磨削表面质量的影响。结果表明:与普通磨削相比,超声振动磨削的磨粒轨迹相互交叉叠加,工件表面形貌更均匀,表面质量更好。由于超声振动时的磨粒划痕交叉会使磨粒产生空切削,因而降低了其磨削力,使磨削过程更加稳定。超声振动磨削的表面粗糙度和磨削力随砂轮线速度和超声振幅的增加而降低,随工件进给速度和磨削深度的减小而降低。且砂轮线速度、工件进给速度较小时,超声振动磨削的效果更明显。   相似文献   

18.
目的 通过无心车床车削去除GH2132线材的表面缺陷,分析无心车床加工参数对线材表面粗糙度、尺寸误差和表面显微硬度的响应关系,并建立GH2132线材表面灰色关联度多目标优化模型,确定可行工艺参数域。方法 采用响应曲面中心复合设计,测量车削后GH2132线材的表面粗糙度、尺寸误差和表面显微硬度;利用响应曲面法(Response Surface Method,RSM)分别建立表面粗糙度、尺寸误差和表面显微硬度的单目标预测模型,确定单目标优化最优工艺参数组;基于灰色关联分析(Grey Correlation Analysis,GRA)理论,以表面粗糙度、尺寸误差和表面显微硬度为优化指标进行降维处理,构建车削工艺参数与灰色关联度的二阶回归预测模型;绘制车削工艺参数与灰色关联度值的等值线图,确定可行工艺参数域。结果 对建立的表面粗糙度、尺寸误差和表面显微硬度的单目标预测模型进行方差分析,显著度均小于0.000 1。得到了最小表面粗糙度工艺参数组,切削速度n=373.919 r/min,进给速度vf =0.475 m/min。得到了最小尺寸误差工艺参数组,n=375.636 r/min,vf =0.596 m/min。得到了最大表面显微硬度工艺参数组,n=337 r/min,vf = 0.903 m/min。对于灰色关联度多目标预测模型,误差范围为0.13%~9.4%,确定的可行工艺参数域对应的最小灰色关联度值为0.544 37。结论 基于灰色关联分析的多目标预测模型的准确度较高,主轴转速n对多目标的响应程度大于进给速度vf。通过确定可行工艺参数域,为GH2132线材去除表面缺陷提供工程参考。  相似文献   

19.
李铠月  张云鹏  杨光美  闫妍 《电加工》2013,(6):28-31,35
针对SiCp/Al的加工,提出一种超声振动磨削放电复合加工的方法.从加工效率、加工稳定性及表面质量等方面与电火花加工进行了对比试验研究。分析了两种加工方法的脉冲宽度和峰值电流对加工速度和表面粗糙度的影响,结果表明:电火花加工的表面粗糙度平均值为尺04.5μm,超声振动磨削放电复合加工的表面粗糙度平均值为Ra2μm:超声振动磨削放电复合加工的稳定性比电火花加工好,但加工速度较低。通过扫描电镜对两种加工方法下零件表面形貌和重熔层进行了观测,对试件表面进行了X射线衍射分析,表明采用超声振动磨削放电复合加工SiCp/Al复合材料可获得较好的表面质量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号