首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
目的 在纯镁表面制备新型复合膜,以提高其耐蚀性.方法 先在硼砂系电解液中对纯镁进行等离子体电解渗硼(PEB)处理,预制表面改性层,然后在硅酸盐系电解液中对其进行微弧氧化(MAO)处理,从而获得PEB+MAO新型复合膜.分别使用扫描电子显微镜(SEM)、能谱仪(EDS)和X射线衍射仪(XRD)分析膜层的微观结构、元素分布及物相组成,膜层的耐蚀性则通过动电位极化曲线和电化学阻抗谱(EIS)来表征.结果 纯镁的等离子体电解渗硼过程经历了电离、置换、吸附和扩散四个阶段,获得的PEB表面改性层由氧化层和扩散层组成.在PEB+MAO复合膜的生长过程中,膜层在其厚度方向存在重叠的现象,而不是逐层的简单堆积.等离子体电解渗透时,硼元素渗入后所形成的渗层区域降低了纯镁基体表面的化学活性,改善了其微观组织结构,进而使PEB+MAO复合膜的腐蚀电流密度较基体、单一PEB改性层和单一微弧氧化膜层分别降低了3、2、1个数量级.同时,EIS研究也表明,PEB+MAO复合膜可以提供相对较长时间的抗蚀保护.另外,分析了PEB表面改性层的生成机理以及PEB+MAO复合膜的形成过程,并建立了物理模型.结论 PEB预处理会显著影响PEB+MAO复合膜的厚度、致密性及成分,继而明显提高纯镁的耐蚀性.该新型的复合膜制备方法有望进一步推广到镁合金上,以提高其耐蚀性和承载能力.  相似文献   

2.
采用液相等离子体电解渗入技术在30%硼砂电解液中在Q235低碳钢表面进行硼碳共渗(PEB/C)快速硬化处理,研究与ZrO2、Si3N4组成两种摩擦副及5 N、10 N、15 N 3种载荷条件下PEB/C渗层的摩擦磨损特性。结果表明,PEB/C处理可以明显降低Q235钢基体在干摩擦条件下摩擦系数和磨损率。当与ZrO2球对摩,载荷为5 N时,PEB/C渗层的摩擦系数只有0.15,磨损率减少为9.10"10-7mm3/N#m,摩擦系数和磨损率分别是Q235钢基体的1/4和1/19。载荷增加时,PEB/C渗层的磨损率也随之增加,但它与Si3N4对摩的磨损率要比ZrO2对摩高。在不同载荷下,PEB/C渗层与ZrO2和Si3N4对摩的磨损机制主要为粘着磨损。PEB/C渗层耐磨性较高的原因是Q235低碳钢表面形成了硬度高达1800 HV的Fe2B渗硼层。  相似文献   

3.
通过熔盐渗硼法在纯钛表面制备了渗硼层以改善表面性能,并对渗硼层进行XRD、SEM、WDS、纳米硬度、耐磨性等测试。结果表明:渗硼层物相主要为Ti B和Ti B2,最外层为连续均匀的Ti B2,次外层为晶须状、颗粒状的Ti B;随渗硼时间延长,渗硼层厚度增加,渗硼层厚度变化范围为11~24μm,渗硼层纳米硬度变化范围为13~23 GPa,渗硼试样的摩擦因数变化范围为0.16~0.33,较纯钛耐磨性显著增强。  相似文献   

4.
目的改善AISI316不锈钢的摩擦磨损性能。方法采用双辉等离子合金化技术,以块状Fe B化合物作为源极材料,在AISI316不锈钢表面制备含硼改性层,对渗层组织、成分、相结构和显微硬度进行分析,并研究改性层在干摩擦条件下的摩擦磨损性能。结果经渗硼处理后,AISI316不锈钢表面形成了一层连续、致密、均匀的改性层,主要由Mo2B和Fe B相组成。改性层具有较高的硬度(964HV0.1),较基体硬度提高了约3倍,且耐磨性较基体有明显提高。结论通过在AISI316不锈钢表面制备渗硼改性层,可明显提高基体材料的硬度和摩擦磨损性能。  相似文献   

5.
利用双辉离子渗金属技术在Ti6Al4V (TC4)合金表面制得锆合金层,进而利用MP-CVD技术使合金层氧化,使表面形成致密的氧化锆合金层,以提高TC4合金的耐蚀性以及耐磨性。利用SEM、XRD分析了锆及氧化锆涂层的表面形貌及物相组成。利用显微硬度计测试锆合金层及氧化锆合金层的表面硬度。利用往复式摩擦磨损试验机测试样品的摩擦性能。利用动电位极化曲线研究了锆合金层及氧化锆合金层在3.5%NaCl溶液中的腐蚀行为。结果显示,与基体TC4合金相比,锆及氧化锆合金层均有更高的显微硬度、较低的摩擦因数和比磨损率,以及更高的耐腐蚀性;其中氧化锆合金层效果更好,其比磨损率仅为基体的7.15%,腐蚀速率比基体降低两个数量级。  相似文献   

6.
采用离子渗金属技术对Ti6Al4V(TC4)钛合金进行了离子渗钼,并用扫描电镜、X射线衍射、能谱分析、显微硬度和磨损试验等对渗层的组织、相组成、成分、显微硬度和磨损性能进行了研究。结果表明,TC4合金经离子渗Mo后,表面可形成MoTi相合金层,使材料的硬度有较大的提高,表面常温干摩擦的摩擦因数比基体的低,磨痕比基体的窄,表现出较好的耐磨性能。  相似文献   

7.
利用等离子体电解渗技术,在TC4钛合金表面制备了等离子体电解氮碳共渗(PEN/C)层.用X射线和扫描电镜分析了渗层的成分和结构特征;用动电位极化曲线和电化学阻抗谱分析PEN/C渗层在3.5%的NaCl溶液中的电化学腐蚀行为和耐蚀性.结果表明在钛合金表面形成的PEN/C渗层为多孔状Ti(C,N),它提高了基体的腐蚀电位,增大了电荷转移电阻,减小了腐蚀电流密度.PEN/C渗层提高了钛合金基体的耐蚀性.  相似文献   

8.
研究了纯镍和镍基合金渗硼层的组织结构和性能,探讨了该合金的渗硼工艺。结果表明,镍和镍基合金在本试验条件下,可在表面获得硬度高、耐磨性、耐蚀性好的Ni2B和Ni3B相。对镍基合金,渗硼表面强化有良好的应用前景。  相似文献   

9.
对TA1纯钛进行了离子碳氮共渗。用扫描电镜对离子碳氮共渗的TA1纯钛改性层进行了观察。用X射线衍射仪测定了改性层的物相。用能谱仪对改性层作成分分析。用显微硬度计测定改性层的硬度。用SRV摩擦磨损试验机测定摩擦系数,在往复式磨损试验机上进行,磨损试验。结果表明,经离子碳氮共渗的TA1纯钛表面获得了金黄色、均匀的Ti2N/TiN改性层,显微硬度为840HV0.01。碳氮共渗表面改性层能明显提高纯钛TA1的耐磨性。  相似文献   

10.
研究了纯镍和镍基合金渗硼层的组织结构和性能,探讨了该合金的渗硼工艺。结果表明,镍和镍基合金在本试验条件下,可在表面获得硬度高、耐磨性、耐蚀性好的Ni2B和Ni3B相。对镍基合金,渗硼表面强化有良好的应用前景。  相似文献   

11.
为提高AZ31B镁合金的表面硬度,改善其摩擦磨损性能及耐蚀性能,采用盐浴碳氮钒共渗工艺在AZ31B镁合金表面形成高硬度碳、氮化合物渗层,并用数字显微硬度计、光学显微镜、X射线衍射仪、X射线能谱仪、摩擦磨损试验和电化学测试分析渗层表面硬度、截面显微形貌、渗层表面物相组成、耐磨性和耐蚀性等。结果表明,盐浴碳氮钒共渗处理使AZ31B镁合金表面形成主要由VC、VN等高硬度金属化合物组成的渗层,渗层表面硬度最高达到283.1 HV0.05,相比原始试样和碳氮共渗处理试样分别提升280%和62%;相比原始试样,碳氮钒共渗试样的摩擦因数和磨损量分别降低约30%和50%,自腐蚀电位提高60 mV,自腐蚀电流密度降低一个数量级,表明盐浴碳氮钒共渗工艺能够显著提高AZ31B镁合金的表面硬度,提升其摩擦磨损性能及耐蚀性能。  相似文献   

12.
A novel protective coating, consisting of three layers (top: diamond-like carbon, middle: aluminum nitride, bottom: aluminum), was deposited on the surface of AZ31 magnesium alloy layer by layer. Nano-indenter, electrochemical system and tribological tester were performed to investigate the hardness, wear resistance and corrosion resistance of the coated AZ31 magnesium alloy, respectively. The DLC/AlN/Al coating improved the magnesium alloy's surface hardness and reduced its friction coefficient, which consequently induced a great improvement of the magnesium alloy's wear resistance. Furthermore, the corrosion resistance of the AZ31 magnesium alloy with the DLC/AlN/Al coating was also enhanced with the corrosion current density decreasing from 2.25 × 10−5 A/cm2 to 1.28 × 10−6 A/cm2 in a 3.5 wt.% NaCl solution.  相似文献   

13.
为了提高304LN不锈钢的耐磨性,延长控制棒导向筒组件使用寿命,采用激光熔覆技术在304LN不锈钢表面制备了Stellite 6钴基熔覆层.利用光学显微镜(OM)、能谱仪(EDS)、显微硬度计、摩擦磨损试验机、腐蚀试验装置等多种试验测试设备,分析了熔覆层组织形貌、成分、显微硬度、摩擦磨损性能及腐蚀行为,确定了多道多层钴基熔覆层的工艺参数.结果表明,熔覆层与基体之间形成了冶金结合,显微组织主要由平面晶区、胞状和柱状晶区、树枝晶区和等轴晶区组成.熔覆层硬度为500 ~ 550 HV,摩擦磨损系数为0.30 ~ 0.35,熔覆层均匀腐蚀速率和缝隙腐蚀速率分别为0.153 和0.143 mg/(dm2·d). 激光熔覆钴基合金可以有效提高304LN不锈钢表面的硬度、耐磨性能和耐腐蚀性能.  相似文献   

14.
45钢激光合金化铬钼硼组织结构及耐磨性研究   总被引:2,自引:0,他引:2  
为了改善45钢表面的耐磨性能,采用CO2激光束在45钢表面进行铬钼硼合金化,以获得高耐磨性的合金复合涂层。利用SEM,XRD,EDS,HVS-1000显微维氏硬度计,MMS-2A型屏显式摩擦磨损试验机,对涂层组织结构与耐磨性进行了分析。结果表明,胞状晶是主要的合金层组织,并在胞状晶上弥散分布着通过原位合成而形成的高硬度合金碳化物,其中,合金层显微硬度最大值为860 HV,是基材的近3倍,其平均耐磨性也是基材的近3倍。  相似文献   

15.
目的研究Al-TiC涂层组织和性能的特性,以提高镁合金涂层的硬度和耐蚀性能。方法采用Nd:YAG固体激光器,在AZ91D镁合金表面通过激光熔覆制备Al-TiC涂层,采用光学显微镜、X射线衍射仪、显微硬度计、电化学工作站,对熔覆层的组织形貌、物相结构、显微硬度和耐蚀性能进行测定和分析。结果 Al-TiC涂层的主要组成相有AlTi_3(C,N)_(0.6),Al_3Mg_2,Mg_2Al_3,Al和TiC等。激光熔覆层的厚度约为0.35 mm,表面成型良好,结合层晶粒细小,熔覆层与镁合金基体之间结合良好,呈大波浪形。熔覆层试样的平均显微硬度为224HV,约为基体显微硬度(62HV)的4倍,由此表明熔覆层对镁合金硬度有明显的增强作用。镁合金基体的自腐蚀电位为-1.475 V,自腐蚀电流密度为7.556×10~(–5) A/cm~2,熔覆层试样的自腐蚀电位为-1.138V,自腐蚀电流密度为4.828×10~(–5) A/cm~2,与镁合金基体相比,熔覆层的腐蚀电位值增加,腐蚀电流密度值变小,熔覆层的耐蚀性能得到提高。结论采用激光熔覆技术,能够在AZ91D镁合金基体表面制备Al-TiC涂层,由于硬质相AlTi_3(C,N)_(0.6),Al_3Mg_2,Mg_2Al_3,TiC等的存在,熔覆层的显微硬度和耐蚀性能显著提高。  相似文献   

16.
磁控溅射镀钛提高 AZ31 镁合金耐磨耐蚀性能的研究   总被引:2,自引:2,他引:0  
目的提高AZ31镁合金的耐磨及耐腐蚀性能。方法采用磁控溅射技术对镁合金进行表面镀钛处理,用扫描电镜研究膜基界面形貌及界面成分,分析结合性能。通过摩擦磨损试验,对比分析镁合金基体和镀Ti膜样品的耐磨性能;通过Tafel极化曲线,对比分析镁合金基体和镀Ti膜样品的耐蚀性能。结果 Ti膜均匀致密,与镁合金基体结合良好。镁合金镀Ti膜后,摩擦系数和磨损失重率下降,腐蚀电位向正方向移动了430 m V,腐蚀电流密度从10.83 m A/cm2下降到2.62×10-7m A/cm2。结论磁控溅射镀Ti膜提高了AZ31镁合金的耐磨和耐蚀性能。  相似文献   

17.
采用JHM-1GY-400型脉冲Nb∶YAG固体激光器和316L不锈钢粉末在20低碳钢表面制备了激光熔覆层。利用OM、XRD、SEM等表征方法分析了不锈钢熔覆层的物相组成和显微组织,并分别利用旋转摩擦试验机和电化学工作站对熔覆层和基材的耐磨损和耐腐蚀性进行了研究。试验结果表明,不锈钢熔覆层厚度约为50 μm,由γ相(奥氏体)和α相(铁素体)组成,其显微组织主要包括细小的树枝晶、粗大的胞状晶以及平面晶;不锈钢熔覆层表面硬度约为基材的2倍,摩擦因数比基材低0.0418,磨损量更低,不锈钢熔覆层比基材具有更高的耐磨性。与基材相比,不锈钢熔覆层具有更低的自腐蚀电流和更高的自腐蚀电位,其耐腐蚀性能更优异。  相似文献   

18.
镁合金材料表面处理技术研究新动态   总被引:1,自引:1,他引:0  
对镁合金材料近年来在表面微弧氧化、表面超疏水膜层、激光表面改性以及溶胶-凝胶涂层四个方面的研究动态进行了简要综述。镁合金材料采用双极性和混合(单极和双极的组合)电流模式微弧氧化处理的膜层生长速率较快,膜层更致密且硬度更高,膜层的耐磨性和耐腐蚀性能更好。在高浓度苛性碱为主的强碱性溶液中添加适量的添加剂,经短时间(~3 min)微弧氧化处理,即可获得中性盐雾试验达200 h以上的致密耐腐蚀膜层。采用水热法、电化学刻蚀、微弧氧化和电沉积等方法,可在镁合金材料表面形成具有微纳米多级结构的粗糙表面,再用低表面能物质对粗糙表面进行修饰,可在镁合金表面获得超疏水膜层,从而提高镁合金的耐腐蚀性能。镁合金材料激光表面改性处理可改善其表面成分,细化晶粒,使组成相分布更均匀以及提高表层的固溶度极限,从而提高镁合金材料的耐腐性能、摩擦磨损抗力和疲劳强度。溶胶-凝胶有机/无机杂化涂层与镁合金基材良好的附着力,不仅可提高镁合金的耐腐蚀性能,还可以使镁合金具有抗氧化、耐磨损、防水性以及其他性能。  相似文献   

19.
Ti6Al4V合金表面离子铌合金化及其耐磨性能研究   总被引:1,自引:1,他引:0  
采用双辉离子渗技术对Ti6Al4V钛合金表面渗Nb,利用扫描电子显微镜、X射线衍射仪、显微硬度计、磨损试验机、电化学测试系统研究钛合金表面离子渗Nb合金化层的形态、结构、力学性能、摩擦学性能和电化学腐蚀性能,并探讨渗Nb改性处理对钛合金在3.5%NaCl溶液中腐蚀磨损行为的影响.结果表明,渗Nb工艺参数对合金化层的形态、结构和性能影响显著,高浓度渗Nb合金化改性层表现出良好的强化效果,显著地改善了Ti6Al4V合金的抗大气环境和抗NaCl溶液腐蚀磨损性能.Ti6Al4V合金基材和渗Nb层的耐磨性能在NaCl溶液中优于大气环境,其原因归于溶液的润滑作用和试样的良好耐腐蚀性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号