首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
通过对室温下AZ31B板筒形件压力润滑拉深的成形过程数值模拟分析,研究了内压力、压边力和凸模圆角半径等工艺参数对成形件壁厚差的影响.通过分析比较镁合金普通拉深和压力润滑拉深的成形效果,研究了成形件的壁厚分布情况.  相似文献   

2.
针对AZ31B镁合金方盒形件进行拉深成形工艺试验,分析了单个工艺参数的变化对盒形件拉深成形过程的影响,在其他因素不变的条件下,凹模温度在150~300℃范围内,成形深度随温度升高而增大,在300℃时成形深度达到最大值;凸模温度保持在120℃左右,差温拉深效果较为明显;压边间隙调整到1.3t(t为板材厚度)时,拉深深度最大;拉深速度在30 mm·min-1时成形深度最大。确定了影响拉深成形深度的各工艺参数的先后顺序为:压边间隙、凸模温度、凹模温度和拉深速度。运用正交试验方法进行各工艺参数优化组合,结果表明,采用最优工艺参数组合可以提高AZ31B镁合金方盒形件拉深成形的成形深度。  相似文献   

3.
汽车翼子板拉深成形模拟及工艺参数优化   总被引:1,自引:0,他引:1  
以汽车翼子板为研究对象,采用有限元分析软件Dynaform对其拉深成形过程进行了模拟。针对拉深成形过程中出现的破裂和起皱等缺陷,选取压边力、冲压速度、板料厚度、摩擦系数4个重要成形工艺参数进行正交试验及参数优化,模拟结果表明,最优拉深成形工艺方案为:压边力1600kN、冲压速度3000mm·s-1、板料厚度1.0mm和摩擦系数0.10,得到零件的最大变薄率为27.7%,最大变厚率为8.5%。采用优化工艺方案进行汽车翼子板拉深试模,成形件质量较好,经检测零件最小壁厚0.728mm,最大壁厚1.08mm,试模结果与有限元模拟结果基本一致。  相似文献   

4.
针对当前复杂半管零件成形难、成形质量差的问题,采用充液拉深成形工艺解决复杂半管零件的成形难题。在采用正交试验以及数值模拟软件的基础上,根据对不同试验方案模拟结果的壁厚分析,得到了复杂半管零件充液拉深成形的最佳成形参数,即液室压力为15 MPa、凹模圆角半径为15 mm、凸模摩擦系数为0.1、凹模摩擦系数为0.1。建立了以抛物线形过渡工艺补偿面的凸模端口结构模型,确定了最优液室压力加载路径为PPB方式,并对5A02-O态铝合金板材充液拉深成形的复杂半管零件进行了工艺试验验证。结果表明,充液拉深成形工艺可有效地解决复杂半管零件的成形问题,成形出零件的最小壁厚为1.65 mm,满足工业要求。  相似文献   

5.
通过正交试验和Dynaform有限元模拟,研究了拉深工艺参数对方形盒成形性能的影响。正交试验设置了凸凹模间隙、凹模圆角半径及摩擦因子三个因素。通过方差分析和模拟可知:摩擦因子对成形力的影响最大;凸凹模间隙值对拉深高度的影响最大;凹模半径对壁厚的影响最大。结果表明:减小摩擦因子可以降低成形力;减小间隙值可大幅提高拉深高度;工艺参数对壁厚无明显影响。将优化的工艺参数应用到实际方形盒拉深成形中后,得到了合格的杯形件,验证了有限元模拟的正确性。  相似文献   

6.
镁合金作为密度量小的金属结构材料,因其轻质,比强度高而被应用于各个工业领域。但镁合金室温塑性及抗腐蚀性能差,限制其广泛应用。为利用其优势并克服其劣势,以5052铝合金为面板,AZ31镁合金为中间板,制成5052/AZ31/5052合金叠层板结构,使获得的零件既轻质又耐蚀。基于正交试验设计方法,考虑成形温度、压边力、润滑剂、拉深速度等工艺参数对5052/AZ31/5052合金叠层板拉深成形性能的影响,以筒形件拉深高度作为主要成形性能评价指标,最大拉深力作为次要评价指标,探讨最优工艺。结果表明,最优工艺组合:成形温度230℃、压边力13. 9 k N、PTFE润滑脂、拉深速度1 mm/min。在保证对成形性能影响较小的情况下,为提高生产效率,最优组合将拉深速度提高到10 mm/min。  相似文献   

7.
袁博  李辉 《锻压技术》2019,44(5):69-73
利用Simufact. forming有限元仿真软件,以变薄拉深工艺中第1道次减薄比、凹模锥角和拉深速度3个工艺参数为自变量,以筒形件的外圆度误差与壁厚偏差为优化目标进行数值模拟,设计3水平3因素的正交试验。基于灰色关联分析法,计算各工艺参数对筒形件尺寸精度的关联系数与关联度,进行多目标优化得到最优工艺参数组合。结果表明,变薄拉深冷成形工艺中,当第1道次减薄比为70%、凹模锥角为10°、拉深速度为10 mm·s~(-1)时,筒形件的尺寸精度较高。变薄拉深工艺参数对筒形件尺寸精度的影响顺序为:第1道次减薄比凹模锥角拉深速度。经过试验验证,仿真结果与试验结果的相对误差小于10%,证明了有限元仿真有良好的可靠性,可为实际生产做出指导。  相似文献   

8.
为了探究多道次变薄拉深工艺参数与筒形件壁厚偏差之间的关系,选取C15-c低碳钢为试验材料进行多道次变薄拉深试验,采用单因素试验设计方案,探究多道次变薄拉深过程中工艺参数(减薄率、凹模锥角和摩擦系数)对工件壁厚偏差的影响规律。采用中心组合旋转设计方法设计试验,采用BBD响应曲面法建立筒形件在多道次变薄拉深过程中工艺参数与壁厚偏差的预测模型,采用Design-Expert10软件对筒形件壁厚偏差进行回归系数及方差分析,并验证回归方程的准确性,对多道次变薄拉深工艺参数进行优化。试验结果表明:经多道次变薄拉深后,工件的实际壁厚均小于理论值,随着减薄率与凹模锥角的增大,工件壁厚偏差整体上呈现增大趋势;随着摩擦系数的增大,工件壁厚偏差整体上呈现先减小后增大趋势;多道次变薄拉深最优参数组合为减薄率45%、凹模锥角9°、摩擦系数0. 14,多道次变薄拉深成形件的壁厚偏差为-0. 0461 mm,达到最小值。  相似文献   

9.
以镁合金筒形件作为研究对象,利用Dynaform软件模拟不同变压边力加载曲线下的拉深成形过程。通过比较不同变压边力加载曲线下筒形件拉深的成形质量,得出压边力随凸模行程增加的方式能够较好改善筒形件成形质量,其中线性增加变压边力加载曲线的成形质量最好。同时以压边力加载曲线、冲压速度、摩擦系数为试验因素设计正交试验,得出最优参数组合为:变压边力加载曲线5、冲压速度2 500mm/s、摩擦系数0.150。  相似文献   

10.
镁/铝合金双金属叠层板兼具镁合金与铝合金两种金属材料的优势,可用于生产同时具有良好耐腐蚀性、轻量化及减震性的产品。而钣金件的生产通常都包括拉深成形,因此首先采用DYNAFORM软件模拟镁/铝双金属叠层板的拉深过程,模拟结果表明,镁板与拉深凸模接触时,镁/铝双金属叠层板的拉深性能较好。利用自制的温热拉深模具对不同厚度AZ31镁合金/1060铝合金双金属叠层板在100~270℃温度范围内进行拉深实验,研究板坯厚度、成形温度等因素对镁/铝双金属叠层板拉深性能的影响,并分析拉深后得到的筒形件的壁厚分布。结果表明,拉深过程中的最大拉深力随着叠层板板厚的增加、板坯成形温度的降低而增大;双金属叠层板拉裂的危险区域与单金属板拉深一样出现在凸模圆角处。与镁合金、铝合金单层板拉深相比,镁/铝双金属叠层板拉深使筒形件的凸耳减小。  相似文献   

11.
针对双台阶筒形件在一次充液拉深成形过程中悬空区减薄、起皱及破裂等问题,设计了二次充液拉深技术。采用Dynaform软件建立了有限元分析模型,分析了液室压力、模具参数对成形质量的影响,提出了优化的工艺参数。结果表明,提出的工艺方法可实现双台阶筒形件的精确成形,采用优化后的工艺参数可获得壁厚分布均匀,最小壁厚可达0.851mm的零件。  相似文献   

12.
针对具有小半径圆角的薄壁环形件的内高压胀形工艺存在所需内压过大和零件贴模程度差的问题,提出了传统内高压胀形以及基于柔性滑动分体式型腔模具的内高压胀形两种成形工艺。分析了在相同加载路径下两种成形工艺的有限元模拟结果,确定了基于滑动分体式型腔模具的内高压胀形工艺方案为较优方案。采用正交试验探究了进给量、最大内压和保压时间对成形件的胀形高度和最大壁厚减薄率的影响,并对试验结果进行了极差分析,结果表明,进给量和最大内压分别是胀形高度以及最大壁厚减薄率的最大影响因素。对试验结果进行综合分析得到了最优方案,即进给量19 mm、最大内压80 MPa和保压时间1 s。采用最优方案进行了试验,结果显示该方案可成形出合格的零件,测量成形件的壁厚分布并与有限元模拟结果进行了对比,有限元模拟结果与试验结果的壁厚减薄趋势基本相符。  相似文献   

13.
利用Dynaform软件对内凹形零件的冲压成形过程进行了仿真模拟,研究了工艺参数对零件成形结果的影响。基于正交试验法,以零件内凹部位最大壁厚和最小壁厚为评价指标,研究了外转角、侧壁长度、内转角、拉深高度、冲压速度、压边力和摩擦系数对壁厚的影响主次关系,获得了最佳的成形工艺参数组合。研究结果表明,当外转角半径R_1=10 mm、侧壁长度l=6 mm、内转角半径R_2=10 mm、拉深高度h=25 mm、冲压速度v=1000 mm·s~(-1)、压边力F=7. 5 k N、摩擦系数μ=0. 1时,得到零件内凹部位的壁厚综合结果最佳。将得到的最佳工艺参数进行验证试验,对比了拉深试验和仿真模拟的结果,得出零件在内凹部位壁厚的分布一致。  相似文献   

14.
张辰锐  李辉 《锻压技术》2023,(1):115-120
在Simufat.forming软件中进行C15不锈钢变薄拉深成形过程有限元仿真模拟,以变薄率、凹模锥角和拉深速度为工艺参数变量,设计3因素3水平L9(33)正交试验,以工件变薄拉深过程中的拉深力、残余应力与壁厚回弹量为成形质量评价指标,采用变异系数法对3个评价指标进行客观权重分配,引入Vague集对正交试验结果进行多目标优化,得到最优工艺参数组合以及各工艺参数对综合评价指标的影响顺序。结果表明:变薄率为42%、凹模锥角为9°、拉深速度为10 mm·s-1时,C15不锈钢变薄拉深工件的成形质量较高。各工艺因素对变薄拉深件的综合成形质量的影响顺序为:拉深速度>变薄率>凹模锥角。对仿真结果进行试验验证,仿真和试验结果的最大相对误差(壁厚回弹量)不大于7.61%,仿真结果具有良好的可靠性,可对实际生产提供理论指导。  相似文献   

15.
温度和压边力是影响铝合金薄板拉深性能的重要工艺参数。本文主要研究了温度和压边力对6082铝合金薄板拉深性能的影响,研究了薄板拉深后的筒形件在各个测量点处的厚度随拉深温度和压边力的变化。结果表明,拉深后试件的最小壁厚出现在与凸模圆角接触处,最大壁厚在侧壁靠近筒口处。试件的最佳拉深工艺参数为拉深温度300℃,拉深速度250 mm/s,压边力80 kN。按照该参数加工出的筒形拉深件的整体回弹值和凸耳较小,具有较好的形状精度和表面质量。  相似文献   

16.
锥底筒形件由锥底和较高的直壁筒组成,其充液拉深过程中液压加载路径既不同于筒形件,也有异于锥形件。利用DYNAFORM有限元软件对锥底筒形件充液拉深过程进行模拟,研究了不同液室压力加载路径对充液拉深锥底筒形件壁厚分布、破裂与起皱等的影响规律,分析了锥底筒形件液压加载路径控制策略。研究结果表明:采用2拐点的液压加载路径适合锥底筒形件充液拉深成形,第1个拐点位置为凸模底部圆角圆心,与凹模圆角圆心在同一条水平线上,第2个拐点位置为凸模锥底上部圆角圆心,与凹模圆角圆心在同一条水平线上;充液拉深得到的锥底筒形件壁厚分布存在2个波谷点,第1个波谷点在锥底筒形件锥形底部圆角和锥壁的结合处(A点),第2个波谷点在锥底上部圆角和直壁结合处(B点);对于不同的拉深比和锥角,应该采用合理的液压加载路径。  相似文献   

17.
AZ31与ME20M镁合金板料热拉深性能实验研究   总被引:1,自引:0,他引:1  
在不同成形温度、拉深速度、润滑条件下对1.2mm厚的AZ31镁合金板料与3mm厚的ME20M镁合金板料进行热拉深性能实验研究。实验表明:AZ31镁板的最佳成形温度为215℃,而ME20M镁板在250℃以上成形性能才随温度的升高明显改善,说明稀土元素对镁合金的室温拉深性能影响很小,但却显著提高镁合金的高温拉深性能,同时也说明镁合金板料具有较佳的轻薄结构成形性;两种镁合金板料热拉深成形性能都对拉深速度敏感.有润滑条件比无润滑条件成形性能要好。通过对成形件传力区部位金相实验分析得知,合理控制热拉深实验参数,能改善成形件微观组织,进而保证成形件质量。  相似文献   

18.
以TAO薄壁半球形零件冷拉深成形为研究对象,采用数值模拟与试验研究相结合的手段,在研究该拉伸成形过程中零件的应变及壁厚分布规律及组织演变规律的基础上,对破裂、起皱缺陷位置进行了预测.同时,采用正交试验分析方法,研究了单位压边力、摩擦系数、凹模圆角半径和凸凹模间隙等工艺参数,对该拉深成形过程的影响规律.结果表明,单位压边力、摩擦系数、凹模圆角半径对拉深过程均有显著影响,其中贡献率分别为凹模圆角半径41.04%,摩擦系数30.27%,压边力24.68%.  相似文献   

19.
工艺参数对TA0半球件冷拉深成形的影响规律   总被引:1,自引:1,他引:0  
以TA0薄壁半球形零件冷拉深成形为研究对象,采用数值模拟与试验研究相结合的手段,在研究该拉伸成形过程中零件的应变及壁厚分布规律及组织演变规律的基础上,对破裂、起皱缺陷位置进行了预测。同时,采用正交试验分析方法,研究了单位压边力、摩擦系数、凹模圆角半径和凸凹模间隙等工艺参数,对该拉深成形过程的影响规律。结果表明,单位压边力、摩擦系数、凹模圆角半径对拉深过程均有显著影响,其中贡献率分别为凹模圆角半径41.04%,摩擦系数30.27%,压边力24.68%。  相似文献   

20.
采用MSC.Marc软件对圆筒件粉体软凹模拉深成形进行数值模拟,分析成形过程中应力状态和变形情况,设计圆筒件粉体软凹模拉深成形实验模具,对圆筒件粉体软凹模拉深成形进行实验研究。有限元模拟与实验结果表明,与刚性凹模拉深成形相比,粉体软凹模成形工艺可以改善零件成形受力状态和壁厚分布,能有效抑制圆筒件凸模圆角破裂危险区域微裂纹的产生,提高板材的成形极限。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号