首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
对含4%Al(质量分数)和不含铝的两种高碳铬钢进行了球化退火、淬火和低温回火处理。含铝钢的球化退火工艺为790℃保温1 h,炉冷至720℃保温6 h,炉冷至650℃空冷,继之以820℃油淬、150℃回火;不含铝钢的球化退火工艺为850℃保温2 h,炉冷至700℃保温5 h,炉冷至650℃空冷,继之以920℃油淬、150℃回火。采用光学显微镜、扫描电镜和X射线衍射仪检测了钢热处理后的显微组织,并测定了硬度,目的是揭示铝对高碳铬钢的组织和性能的影响。结果表明,与不含铝的高碳铬钢相比,含4%Al的高碳铬钢球化退火态硬度要高60HBW,碳化物数量较少且呈短棒状;淬火、回火后的组织为马氏体,无碳化物,硬度低200HV0.2,残留奥氏体体积分数高5%以上。  相似文献   

2.
对S55C钢进行了不同工艺的球化退火处理,研究了所获得的组织和硬度。结果表明,S55C钢经740 ℃保温5 h,以≤20 ℃/h的冷速缓冷至700 ℃保温5 h,再以≤40 ℃/h的冷速缓冷至680 ℃保温5 h后空冷,得到的组织为球状珠光体,珠光体球化率≥90%,硬度值165 HBW,符合客户使用要求。  相似文献   

3.
改进型4Cr5Mo2MnV1Si压铸模块钢采用传统“余热退火+正火+等温球化退火”工艺球化处理后,组织未达到技术要求,对其传统球化处理工艺做了改进,并对改进工艺处理试样的组织、硬度进行检测。结果表明,试验钢余热退火+正火+等温球化退火后,再经1010℃保温0.5 h炉冷至不同温度(820、790和760℃)保温1 h空冷处理后,显微组织均呈板条马氏体形态,基体上均匀弥散分布有碳化物颗粒,但硬度均高于400 HBW,未达到硬度小于240 HBW球化组织的要求。而经1010℃保温0.5 h空冷至室温,再820、790和760℃保温1 h回火空冷处理后,组织均为等轴铁素体上均匀分布着质点状碳化物,硬度分别为321、235和245 HBW,其中790℃回火效果最好,球化组织级别达到GB3,硬度小于240 HBW。因此,采用余热退火+正火+高温回火(790℃)代替余热退火+正火+等温球化退火可实现改进型4Cr5Mo2MnV1Si压铸模块钢的锻后球化处理。  相似文献   

4.
通过对Cr12Mo V冷作模具钢常规球化退火工艺的改进,进行快速预冷等温球化退火工艺试验,并将经新工艺退火后的合金进行淬火、回火热处理,研究了不同预冷等温球化退火工艺对Cr12Mo V钢最终热处理组织和性能的影响。结果表明:理想的球化退火新工艺是940℃×0.5 h油冷至400℃左右后进行730℃×(1~1.5)h等温退火处理,该工艺处理后获得的碳化物颗粒细小,分布均匀,硬度适当,球化效果好,并大大缩短了退火时间。该钢经理想新工艺退火后再经淬火、回火,其组织和性能均优于经常规退火处理后再经淬火、回火的组织和性能。  相似文献   

5.
对3Cr2W8V钢进行了等温球化退火、淬火以及不同温度的回火处理,通过组织分析及力学性能测试,研究了热处理工艺对3Cr2W8V钢组织和性能的影响。结果表明,通过等温球化退火可获得球状或点状的珠光体组织,同时碳化物的形态得到明显改善。1070℃淬火后分别在580、630、680与730℃进行两次回火,随回火温度的升高,硬度先升高后降低,而韧性则呈现出相反的变化趋势。因此,3Cr2W8V钢经等温球化退火、1070℃淬火后再680℃左右两次回火能够获得良好的综合力学性能,有利于延长模具寿命。  相似文献   

6.
通过对60Si2Mn冷拔珠光体钢丝进行快速球化退火处理,即将其加热到810 ℃奥氏体化,保温1.5 min后随炉冷却至500 ℃出炉空冷,研究了其力学性能、球化效果、球化时间和快速球化的机理,并与普通球化退火及等温球化退火这两种常用球化退火工艺进行了对比。结果表明,与两种常用球化退火工艺相比,快速球化退火显著缩短了退火时间,且球化效果更好,其屈服强度、抗拉强度、伸长率、断面收缩率分别为620 MPa、745 MPa、21%和66.7%。球化时间的缩短主要是因为冷拔变形使钢中的位错密度和畸变能增加,促使片层状珠光体能够在加热过程中快速溶断,并促进渗碳体组织的球化。  相似文献   

7.
对GCr15轴承钢进行了不同温度和不同时间的球化退火,测定了所获得的组织和硬度,以探索能取代传统球化退火工艺的新工艺。结果表明,GCr15钢经760℃保温2 h后炉冷至500℃空冷,其球状珠光体为2~4级,硬度为188 HB,符合有关标准的要求,且缩短了工艺周期,提高了生产效率。  相似文献   

8.
把脉冲电场和稳衡磁场引入9SiCr模具钢球化退火和等温淬火处理,使球化退火加热温度由850~ 870℃降到790℃,处理时间由3~6h缩短到2h,得到了理想的球化组织;在等温淬火中引入脉冲电场和交变磁场, 处理后得到M+30%B 下组织,获得高强、高韧的力学性能。  相似文献   

9.
研究了快速球化退火的奥氏体化温度、保温时间以及双相区冷却速度对GCr15钢残留碳化物粒子的数量和分布形态的影响。根据"离异共析"的原理和奥氏体状态对残留碳化物粒子影响的研究结果,制定了GCr15钢的快速球化退火工艺。试验表明,GCr15钢经790℃×10 min奥氏体化,炉冷至720℃等温60 min炉冷快速球化退火后,其球化组织为2.5级,总退火时间为3.5 h,明显优于传统球化退火工艺。  相似文献   

10.
采用OM、TEM和XRD对深层渗碳处理后H13钢的显微组织进行观测,研究了深层渗碳对H13钢显微组织和硬度的影响。结果表明:渗碳后完全退火试样与渗碳后球化退火试样的渗碳层厚度均在3 mm以上,组织细密均匀,硬度提高30%~60%;渗碳后球化退火试样的晶粒更细小,基体上碳化物弥散分布并存在较多的亚结构,且表面硬度稍高于渗碳后完全退火试样。最佳深层渗碳处理工艺为1000℃下固体渗碳4 h,接着进行球化退火(840℃保温4 h,炉冷到740℃再保温4 h,炉冷到500℃后空冷到室温),然后进行1030℃淬火10 min,最后进行560℃回火2次,每次2 h。  相似文献   

11.
采用OM、TEM和XRD对深层渗碳处理后H13钢的显微组织进行观测,研究了深层渗碳对H13钢显微组织和硬度的影响。结果表明:渗碳后完全退火试样与渗碳后球化退火试样的渗碳层厚度均在3 mm以上,组织细密均匀,硬度提高30%~60%;渗碳后球化退火试样的晶粒更细小,基体上碳化物弥散分布并存在较多的亚结构,且表面硬度稍高于渗碳后完全退火试样。最佳深层渗碳处理工艺为1000℃下固体渗碳4 h,接着进行球化退火(840℃保温4 h,炉冷到740℃再保温4 h,炉冷到500℃后空冷到室温),然后进行1030℃淬火10 min,最后进行560℃回火2次,每次2 h。  相似文献   

12.
根据热模拟试验测得42CrMoVNb高强度螺栓钢的Ac1、Ac3分别为773 ℃、811 ℃,并由此设计试验钢的球化退火工艺,通过改变保温温度、保温时间对其球化退火工艺进行了研究。通过光学显微镜、扫描电镜、显微维氏硬度以及冷镦试验,对不同球化退火工艺过程中碳化物的球化演变和硬度变化进行了分析。结果表明:试验钢经Ac1以上780 ℃短暂保温0.5 h,缓冷至710 ℃保温6 h球化退火及Ac1以下750 ℃保温3 h,缓冷至710 ℃保温6 h球化退火后,均能得到良好的球化组织与较低的硬度,碳化物形态均趋于球状且分布均匀,具有良好的塑性和冷镦性能。Ac1以下750 ℃球化时,保温时间越长碳化物球化越明显。  相似文献   

13.
热处理工艺对Cr12钢组织和性能的影响   总被引:2,自引:0,他引:2  
对Cr12钢采用等温球化退火工艺处理,组织中共晶碳化物形态和分布得到明显改善,获得了均匀细小的球状珠光体和弥散分布的细粒状合金碳化物显微组织,然后采用等温球化退火→充分预热→淬火→中温回火新工艺处理Cr12钢后,获得优异的综合力学性能。经使用表明:新工艺处理后的Cr12钢的使用寿命比常规热处理工艺提高1~2倍。  相似文献   

14.
采用扫描电镜、光学显微镜、洛氏硬度计、材料拉伸试验机等研究了不同预处理工艺对P20钢两相区淬火组织和性能的影响。结果表明:由于预处理工艺不同,P20钢两相区淬火的显微组织存在明显差异。A组试样(860℃×1h空冷+860℃×30 min炉冷退火)预处理在两相区淬火的铁素体为块状,碳化物颗粒较多;B组试样(860℃×1 h空冷+860℃×30 min油冷淬火)预处理在两相区淬火的铁素体为长条状,碳化物颗粒较少;B组试样两相区淬火的力学性能优于A组试样,其原因是B组试样两相区淬火时,碳化物得以充分固溶扩散,淬火组织中碳化物颗粒少而小。  相似文献   

15.
把脉冲电场和稳衡磁场引入9SiCr模具钢球化退火和等温淬火处理,使球化退火加热温度由850-870℃降到790℃,处理时间由3-6h缩短到2h,得到了理想的球化组织,在等温淬火中引入脉冲电场和交变磁场,处理后得到M+30%B F组织,获得高强,高韧的力学性能。  相似文献   

16.
在略低于Ac_1的温度对试验钢进行退火加热,由于铁、碳等元素的扩散,α相通过回复、再结晶形成多边形的铁素体,渗碳体不断聚集、长大成粗粒状,渗碳体的球化成为软化的主要因素。研究结果表明,进行660℃×20h,炉冷至小于300℃空冷的退火处理,可获得良好的机械加工性能,既经济又实效。  相似文献   

17.
800 MPa高强实心焊丝用低合金钢盘条在后续拉拔加工过程中由于加工硬化会经常导致断丝。采用不同退火工艺对粗拔后的盘条进行退火处理,并研究了球化退火及完全退火对其显微组织和力学性能的影响。结果表明,两种退火方式中球化退火更适合盘条后续拉拔。盘条采用750℃保温6 h,随炉冷却至300℃出炉空冷的球化退火工艺,可以获得分布均匀的球状珠光体组织,同时晶粒细小,明显降低了盘条的抗拉强度,提高了塑性和可拉拔性。  相似文献   

18.
高碳钢球化机制与Ac1f透烧球化退火工艺   总被引:3,自引:0,他引:3  
对高碳钢球化退火机制进行了研究,认为碳化物球化的核心是加热时的剩余碳化物,若加热时得到不均匀奥氏体和剩余碳化物组织,则奥氏体过冷分解是α相在碳化物质点间单独形核,随后两相以幂函数规律各自独立呈球状急速长大成粒状珠光体(Ps)组织;当加热得到均匀奥氏体和剩余碳化物时,过冷奥氏体的分解按两相相互激发形核及随后的合作、协调、匹配长大成层片状珠光体(PL)。由此开发出Ac1f透烧加热的球化退火工艺,生产试验取得了球化质量好,生产周期短及节能的效果。  相似文献   

19.
使用SG-GL1400K型真空热处理炉对冷轧N6纯镍板进行了退火处理,温度分别为350、400、450、500、550℃,保温持续时间1 h后炉冷至150℃再空冷至室温。对退火后N6纯镍板的显微组织和力学性能进行了分析。结果表明,N6纯镍板在500℃×1 h退火后炉冷至150℃再空冷至室温为最佳工艺。  相似文献   

20.
本文以50CrVA弹簧钢为研究对象,研究其一段式球化退火工艺和两段式球化退火工艺对显微组织的影响。结果显示:二段式退火得到较好的球化组织,工艺参数为780℃保温100 min+720℃保温200 min,再炉冷至600℃,最后空冷至室温。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号