首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
张津  计鹏飞  周俊  连勇 《焊接学报》2016,37(11):51-54
对5083铝/6082铝异种材料搅拌摩擦焊(friction stir welding,FSW)进行研究,重点分析轴肩直径对横截面形貌、显微组织与显微硬度的影响规律.结果表明,FSW接头焊核区由致密细小的等轴晶组成;增加轴肩直径可增加焊核区沿垂直焊缝方向的宽度以及增大焊核区、热影响区与热力影响区的晶粒尺寸.与后退侧的6082铝合金不同,前进侧5083铝合金的热力影响区发生了动态再结晶.显微硬度呈W形分布,最小值出现在热影响区.显微硬度的测试结果与焊核区的横截面形貌结果吻合.  相似文献   

2.
2024/7075异种铝合金搅拌摩擦焊的晶体取向演化   总被引:1,自引:0,他引:1       下载免费PDF全文
周俊  张津  计鹏飞 《焊接学报》2016,37(8):59-62
使用光学显微镜、电子背散射衍射(EBSD)对比研究了2024/7075异种铝合金搅拌摩擦焊(FSW)接头及母材的组织特征、晶界特征和织构的演化.结果表明,后退侧热力影响区晶粒的小角度晶界含量较母材明显增大而前进侧热力影响区晶粒的小角度晶界含量与母材相比没有明显变化,焊核区发生了动态再结晶,大角度晶界含量明显增加.后退侧2024铝合金为弱取向组织,前进侧7075铝合金母材、热影响区以及热机影响区具有较强的S织构{123}<634>、黄铜织构{011}<211>和R织构{124}<211>,焊核区为等轴再结晶晶粒,没有明显的择优取向.  相似文献   

3.
Friction stir welding (FSW) succeeded in producing high quality dissimilar welds with AA5083 and A6N01 by evaluation of the microstructure and the root bend testing. A6N01 with a wide optimum range of welding condition should be placed on the retreating side to weld a sound joint between AA5083 and A6N01. The optimum welding condition of FSW for the dissimilar alloys between AA5083 and A6N01 was wider than that of AA5083. In the opposite orientation, A6N01 on the advancing side can hardly flow into AA5083 on the retreating side in front of the tool. As the pores on inappropriate welding conditions were observed, large pores on a lower tool rotation speed were different from small discontinuous pores on a higher tool rotation speed.  相似文献   

4.
The mechanical properties of precipitation hardened Al 6061-T651 and Al 7075-T6 and strain hardened Al 5083-H32, friction stir welded with various welding parameters, were examined in the present study. 4 mm thick Al 6061-T651, Al 7075-T6, and Al 5083-H32 alloy plates were used for friction stir welding (FSW) with rotating speed varied from 1000 to 2500 rpm (rotation per minute) and welding speed ranging from 0.1 to 0.4 mpm (m/min). Each alloy displayed slightly different trends with respect to the effect of different welding parameters on the tensile properties of the FSWed Al alloys. The tensile elongation of FSWed Al 6061-T651 and Al 7075-T6 tended to increase greatly, while the tensile strength decreased marginally, with increasing welding speed and/or decreasing rotating speed. The tensile strength and the tensile elongation of Al 6061-T651 decreased from 135 to 154 MPa and 10.6 to 17.0%, respectively, with increasing welding speed from 0.1 to 0.4 mpm at a rotating speed of 1,600 rpm. Unlike the age-hardened Al 6061-T651 and Al 7075-T6, the strain-hardened Al 5083-H32 showed no notable change in tensile property with varying welding parameters. The change in the strength level with different welding parameters for each alloy was not as significant as the variation in tensile elongation. It was believed that the tensile elongation of FSWed Al alloys with varying welding parameters was mainly determined by the coarse particle clustering. With respect to the change in tensile strength during friction stir welding, it is hypothesized that two competing mechanisms, recovery by friction and heat and strain hardening by plastic flow in the weld zone offset the effects of different welding parameters on the tensile strength level of FSWed Al alloys.  相似文献   

5.
0IntroductionThe friction stir welding(FSW),a new solid-statewelding process invented by TWI in1991,is perhaps themost remarkable and potentially useful new welding tech-nique.In the welding process,the base metal doesn’tmelt,so great advantages can be a…  相似文献   

6.
Friction stir lap welding of the similar and dissimilar aluminum alloys is investigated. AA 5182 and AA 6022 aluminum alloys (the widely used aluminum alloys for automobile applications) are selected for the feasibility studies. The friction stir lap welding shows that the placement of the aluminum alloys in the different orders over each other affect the final weld quality and its mechanical properties. The welding parameters such as rotational and traverse speeds and the penetration depth are key factors to affect the micro-structure soundness. The mechanical and the micro-structural characterization is performed on the joints formed with varying welding parameters and from the different order of placement of the AA 6022 and the AA 5182 sheets. The weld failure occurs on the advancing side during the peel tests indicating that the retreating side is relatively stronger. Measured temperatures indicate that the advancing side has higher developed temperature during the course of welding compared to the retreating side.  相似文献   

7.
Material flow and phase transformation were studied at the interface of dissimilar joint between Al 6013 and Mg, produced by stir friction welding (FSW) experiments. Defect-free weld was obtained when aluminum and magnesium were placed in the advancing side and retreating side respectively and the tool was placed 1 mm off the weld centerline into the aluminum side. In order to understand the material flow during FSW, steel shots were implanted as indexes into the welding path. After welding, using X-ray images, secondary positions of the steel shots were evaluated. It was revealed that steel shots implanted in advancing side were penetrated from the advancing side into the retreating side, whereas the shots implanted in the retreating side remained in the retreating side, without penetrating into the advancing side. The welded specimens were also heat treated. The effects of heat treatment on the mechanical properties of the welds and the formation of new intermetallic layers were investigated. Two intermetallic compounds, Al3Mg2 and Al12Mg17, were formed sequentially at Al6013/Mg interface.  相似文献   

8.
Friction stir welding (FSW) has been used for joining AA5083 and AA7B04 alloy sheets with the aim of studying the microstructure and the mechanical properties of dissimilar FSW joints obtained by varying the initial base metal state of AA7B04 alloy. The results show that the initial base metal state has a significant impact on the material flow during dissimilar FSW. As compared with the joints placing hard alloy (artificially aged AA7B04-AA or naturally aged AA7B04-NA) on the retreating side, it becomes easier transporting AA5083 from advancing side to retreating side when soft alloy (annealed AA7B04-O) is placed on the retreating side. The atomic diffusion does not occur at the interface between AA5083 and AA7B04, indicating that the mixing of the two materials is merely mechanical. Grain refinement is observed in the stir zone. The failure location during tensile tests is different depending on the initial base metal state. The joints (AA5083/AA7B04-AA and AA5083/AA7B04-O) fail in the base metal on the soft material side which corresponds to the minimum values in hardness profiles. Differently, the joints (AA5083/AA5083 and AA5083/AA7B04-O) fail in the stir zone due to the presence of defects including “zigzag line,” kissing bond and discontinuous voids.  相似文献   

9.
Friction stir welding (FSW) provides many advantages over traditional joining techniques, the most significant of which is lower cost of fabrication. Titanium alloys provide a high specific strength and increased corrosion resistance, which makes them an attractive material for use in extreme environments, such as those experienced by the next generation vehicle systems – marine, air, land or space. This research is focused on understanding the local mechanical properties and microstructure of a friction stir weld of a 12.7 mm thick plate of Ti-5111 in the direction transverse to the weld. The weld showed significant increases in strength and ductility in the stir zone. The retreating side of the weld showed reduced strength and ductility below the base property. This result, however, was found to be limited to the microscale. The understanding gained from this research should lead to future process optimizations of FSW.  相似文献   

10.
搅拌摩擦焊接偏心挤压流动模型   总被引:3,自引:1,他引:2       下载免费PDF全文
提出了一种偏心挤压流动模型,该模型认为搅拌头对软化材料的偏心挤压作用是形成接头的主要因素.基于该模型,设计并进行了偏心搅拌摩擦焊接试验.结果表明,搅拌摩擦焊接过程中,接头是由搅拌头偏心挤压材料形成的;搅拌头的偏心量越大,形成的接头核心区也将越大;在搅拌针附近的金属流动将使焊接接头形成在行进方向的层状结构;在接头表面将形成弧形纹,形成的弧形纹不是沿板材对接面对称的,而是偏向后退侧的,弧纹在后退侧形成的弧纹夹角比前进侧形成的弧纹夹角大;行进方向的层状结构和接头表面的弧形纹有对应关系.  相似文献   

11.
Ultra-fine grained TA5 titanium alloy was fabricated by friction stir processing (FSP). Temperature distribution and material flow were simulated by the coupled Euler–Lagrange (CEL) method. The microstructure and mechanical properties of TA5 alloy were characterized by optical and scanning electron microscope, Vickers hardness, and tensile tests. The processed alloy was composed of ultra-fine grained and equiaxed grains due to dynamic recrystallization. The microstructure recrystallized through grain boundary rotation and dislocation accumulation. The grain size reached the minimum on the advancing side of the stir zone with the highest grain misorientation. Ultimate tensile strength was promoted to over 830 MPa after FSP at a rotating speed of 200 r/min, whereas elongation varied a little. The specimens all fractured on the retreating side of the stir zone and smaller dimples were depicted from the fracture morphologies of FSP specimens.  相似文献   

12.
Variations in composition, microhardness (in the thermomechanically affected zone) and texture in the tool domain of the dissimilar friction stir weld of AA5083-O and AA6082-T6 alloys were investigated. The contents of the major alloying elements in the weld zones were determined using inductively coupled plasma?atomic emission spectroscopy. It was observed that a slight drop in the content of the alloying elements results from the friction stir welding process with the Mg content being the most affected amongst the major alloying elements in the two alloys. By relating the mass fractions of the major alloying elements in the parent metals of both alloys to those of the stir zone, the relative proportions of the two alloys in the stir zone were estimated with the results showing that at least 60% of the materials in the stir zone are from the retreating side of the weld. It was also revealed that the changes in the hardness profile in the thermomechanically affected zone of the retreating side are predominantly influenced by changes in grain size in that domain. Finally, the investigation further revealed that the texture component in the tool shoulder domain is different from the texture component in the tool pin domain.  相似文献   

13.
采用搅拌摩擦焊双面焊工艺,对35 mm厚板6005A-T6铝合金型材进行了搅拌摩擦焊接,获得成形良好、表面光滑、无隧道孔和沟槽缺陷的焊接接头.应用光学显微镜、扫描电镜、显微硬度仪及电子拉伸试验机等对搅拌摩擦焊接头组织与性能进行研究.结果表明,接头焊核区组织为细小等轴晶;前进侧出现明显的螺旋纹及清晰的结合线,热力影响区晶粒被明显拉长呈条状组织,热影响区受热晶粒粗大;后退侧未见螺旋纹,晶粒比前进侧细小,过渡区较前进侧宽.在搅拌头旋转频率为650 r/min,焊接速度为200 mm/min工艺条件下接头抗拉强度为213 MPa,达到母材强度的84.8%,断裂起始于焊缝前进侧的热影响区,扩展至双面焊接重合区时,沿着焊缝后退侧热影响区直至断裂;接头显微硬度最低值出现在前进侧热影响区,最低值为50 HV.  相似文献   

14.
Abstract

Aluminium alloys AA 5083 and AA 6082 have been friction stir welded and the mechanical properties and microstructures of the welds have been evaluated. Alloy AA 5083 mainly fractured near the centre of the weld, while fracture in AA 6082 mainly occurred in the heat affected zone. The tensile strength of welded joints in AA 6082 was lower than the base material strength, but still met classification societies' requirements. Hardness was approximately constant across the welded zone in AA 5083, while a minimum in hardness was found in the AA 6082 welds. The location of the fracture closely matched the minimum hardness region. Very fine scale precipitation in AA 6082 was significantly affected by the weld thermal cycle. In the zone of lowest hardness, the hardening precipitate (β″-Mg5Si6) had transformed to the non-hardening β′-Mg1.7Si. This is probably the main reason for the minimum in hardness, the fracture location, and the decreased tensile strength. Results are compared to a similar investigation of aluminium alloy AA 7075.  相似文献   

15.
In friction stir welding of aluminum alloys, tunnel defect may occur due to insufficient plastic material flow caused by lower heat input in the weld region. The inadequacy in heat input is due to improper selection of friction stir welding tool and process parameters. Ultimately, such defects degrade the properties of weld and may pose serious concerns towards the integrity and safety of the weld component. In order to improve the properties of weld joints, an ultrasonic-assisted friction stir welding device has been configured where ultrasonic energy is transferred from an ultrasonic unit directly into one of the workpieces near the tool. Using this configuration, ultrasonic-assisted friction stir welding was conducted on 6 mm thick 2024-T3 aluminum alloy sheets. The macrostructure and mechanical properties of these welds were compared with the welds of this alloy prepared by conventional friction stir welding using identical process parameters. The results show that the welding speed can be increased while satisfactory weld quality is still ensured. The ultrasonic energy transferred in this configuration could enlarge the volume of weld nugget zone. Also, the influence of ultrasonic energy on the suppression or elimination of the tunnel defect is quite apparent. However, any beneficial effects of ultrasonic vibration on the tensile strength and the elongation of the joint were less obvious in this configuration.  相似文献   

16.
搅拌摩擦焊接三维流动模型   总被引:12,自引:1,他引:11       下载免费PDF全文
建立了搅拌摩擦焊焊接过程中塑性软化层的流动行为物理模型,该模型根据不同部位的流动特点将软化层的流动分成三部分,轴肩端面附近的软化层流动、搅拌针上部的软化层流动和搅拌针端部附近的软化层流动行为。轴肩端面附近的软化材料首先流入搅拌针行进过程中于搅拌针后部形成的空腔内,剩余软化材料围绕着轴肩侧面缓缓地由前进侧流动到搅拌针的后部,并于轴肩后部侧表面上形成了焊缝表面弧形纹的弧峰;搅拌针上部附近的软化层以剪切的方式从搅拌针前部流动到搅拌针后部;搅拌针端部附近的软化层以挤压的方式从搅拌针的前部流动到搅拌针的后部。  相似文献   

17.
研究异种搅拌摩擦焊AA5083-H111和AA6351-T6铝合金的微观结构和力学性能。在3种不同的焊接速度(36、63、90 mm/min)下焊接AA5083-H111和AA6351-T6铝合金,分析焊接速度对接头力学和冶金性能的影响。结构表明,与其他焊接速度相比,焊接速度为63 mm/min时接头的力学性能和冶金性能较好。焊缝区由未混合区、机械混合区和混流区组成。所观察到的断裂模式为韧性纤维断裂。  相似文献   

18.
T形接头角接静轴肩搅拌摩擦焊三维流动特征   总被引:1,自引:2,他引:1       下载免费PDF全文
在T形接头横截面方向预置0.1 mm铜箔作为示踪材料,进行了角接静轴肩搅拌摩擦焊,焊后对T形接头角焊缝进行X-ray 2D透射和X-ray 3D扫描,得到了角焊缝示踪材料的2D流场和3D流场. 在前进侧热塑性材料主要以摩擦剪切为主,材料流动主要向焊接方向流动,并流向前进侧后方,后退侧材料主要以挤压为主,由于T接搅拌针螺纹的存在,使得材料整体向后退侧下方流动. 同时发现,在T接静轴肩后沿附近下方存在示踪材料"堆积区",表明T接静轴肩对附近的材料塑性流动存在一定的阻碍作用. 根据所获得的观察结果,建立了T形接头角焊缝的三维流动主要特征模型.  相似文献   

19.
6082-T6铝合金搅拌摩擦焊组织演变与力学性能   总被引:3,自引:2,他引:1       下载免费PDF全文
通过透射电子显微镜、扫描电子显微镜、拉伸试验机和显微硬度计对6082-T6铝合金搅拌摩擦焊接头焊缝区组织演变和力学性能进行分层研究. 结果表明,在焊核区上层,材料发生塑性变形,晶格畸变能增加,为降低能量,大量的位错集聚成亚结构边界发生动态回复. 同时在焊接热循环的作用下发生动态再结晶,导致焊缝区上层晶粒细小. 在焊核区下层,主要受到搅拌针搅拌作用,轴肩产热通过扩散过程传递到下层的热量减少,发生动态回复和动态再结晶程度低于焊缝上层,晶粒粗大. 前进侧和后退侧热影响区均出现棒状β′沉淀相. 对应焊缝上、下两层硬度都呈“W”形分布,焊缝上层硬度高于焊缝下层硬度,最小值出现在前进侧. 沿着焊缝长度方向上层和下层的抗拉强度分别为205,186 MPa,呈降低趋势,为韧性断裂.  相似文献   

20.
30 mm 7A05铝合金搅拌摩擦焊接头组织及力学性能   总被引:3,自引:1,他引:2       下载免费PDF全文
采用搅拌摩擦焊方法利用新型搅拌头对30 mm厚的7A05-T6铝合金进行了单道对接,焊后分析讨论了焊缝接头微观组织和力学性能.结果表明,接头焊核区发生动态再结晶,生成细小的等轴晶粒;焊缝两侧热力影响区受机械和热的双重作用,组织存在较大差异,前进侧为窄条状组织,后退侧为扁平状组织;热影响区晶粒粗化;在焊接30 mm板时,工艺参数范围较窄,旋转频率为360 r/min,焊接速度为100 mm/min时,可获得无缺陷、成形好的焊缝;接头抗拉强度为367.7 MPa、屈服强度为280.8 MPa、断后伸长率为14.4%高于母材,接头抗拉强度可达母材的95%.接头显微硬度的分布呈类似W形分布,热影响区软化趋势比较明显.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号