首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用万能力学试验机及霍普金森压杆试验研究了固溶和时效处理对Ti-6Al-4V ELI钛合金准静态拉伸性能和动态压缩性能的影响。结果表明,Ti-6Al-4V ELI钛合金经固溶时效处理后(固溶温度941 ℃),其屈服强度可达1097 MPa以上,抗拉强度可达1167 MPa以上。相比热处理前的Ti-6Al-4V ELI钛合金,强度显著提升,而且塑性指标也维持在较高水平。同时,不同应变速率下Ti-6Al-4V ELI钛合金的动态压缩性能提升明显,动态压缩强度和应变速率的对数呈线性关系,且随着应变速率的增加而增大。  相似文献   

2.
采用Ti-6Al-4V ELI大规格棒料,经多次制坯、多次锻造试制了某民用飞机用大型接头模锻件。该锻件经β退火得到了均一的魏氏组织,晶内片层组织较细小,力学性能较好。  相似文献   

3.
自β相区温度冷却,冷却速率对钛合金机械性能有重要影响。为此,对采用在两相区形变热处理来控制组织已进行了广泛研究,但对循环变形的影响尚缺乏研究。西班牙的F.Igi1等人研究了Ti-6Al-4V合金的组织对其循环变形行为的影响。研究中利用950℃锻造的φ12mm棒,经700℃退火后空冷,其组织为等轴“和被残存β相所包围的魏氏片组成。合金成分和组织都符合ASTMF136-84外科用Ti-6Al-4V ELI标准。按ASTM  相似文献   

4.
《铸造技术》2016,(9):1852-1854
通过对47Ti-45Zr-5Al-3V合金进行不同温度退火处理,对其微观组织与性能的演变规律进行研究。结果表明,经过高温锻造后的47Ti-45Zr-5Al-3V合金由α+β相组成,在550℃以上温度热处理时合金中α相向β相转变。随温度升高合金中β相含量增加,当温度为800℃时α相全部转变为β相。热处理对47Ti-45Zr-5Al-3V合金的力学性能的影响取决于α相和β相含量。合金抗拉强度随β相含量增加降低,而伸长率增加。  相似文献   

5.
研究Ti-6Al-4V ELI化学成分中Fe和O含量(A,B组),热处理制度:退火温度和时间(C,D组)等四个因素分别对脊柱顶丝类医用钛合金Ti-6Al-4VELI棒材力学性能的影响,设计并进行了相应的4因素3水平正交实验。通过对上述实验所得基本力学性能数据的分析,结果表明:在各因素水平变化范围之内,强度以高O含量(B组)的Ti-6Al-4V ELI最高,其对强度影响大小的次序为:氧含量、铁含量、退火温度和退火时间;而塑性则以退火时间为D3组时最高,其对断后伸长率影响由大到小次序为:铁含量(退火时间)、退火温度、氧含量;同时硬度则以高氧含量组的最高,其对硬度影响由大到小的次序则为:氧含量、铁含量、退火时间和退火温度。当Fe含量控制在0.2%,O含量控制在0.13%左右的Ti-6Al-4V ELI钛合金,采用650~700℃/1.5 h退火处理时,可获得强度(Rm1050MPa,Rp0.2960 MPa),塑性(A15%,Z50%),硬度(HV310)理想的综合性能优异作为脊柱顶丝类医用的高强韧性Ti-6Al-4V ELI钛合金棒材。  相似文献   

6.
对Ti-6Al-4V合金铸件,先自β相变点以上温度淬火,随后进行970℃(?)750℃循环热处理,能有效地细化铸件的粗大魏氏组织,提高综合机械性能.研究表明,淬火工序可消除晶界α,还可获得全马氏体组织,从而切断了原粗大魏氏组织的遗传性.在随后进行的循环热处理过程中,马氏体分解,β相在α′条的位错及亚结构边界上析出,使原α′条被分割为许多α小晶体,这些小晶体随后聚集长大成位向混乱、互相交织的α针,并随着热循环而发生碎断和球化,成为细碎的网篮组织.  相似文献   

7.
对Ti-6Al-4V合金铸件,先自β相变点以上温度淬火,随后进行970℃(?)750℃循环热处理,能有效地细化铸件的粗大魏氏组织,提高综合机械性能.研究表明,淬火工序可消除晶界α,还可获得全马氏体组织,从而切断了原粗大魏氏组织的遗传性.在随后进行的循环热处理过程中,马氏体分解,β相在α′条的位错及亚结构边界上析出,使原α′条被分割为许多α小晶体,这些小晶体随后聚集长大成位向混乱、互相交织的α针,并随着热循环而发生碎断和球化,成为细碎的网篮组织.  相似文献   

8.
探讨了轧制及热处理对Ti-6Al-4V钛合金厚板材组织变化的影响.对板材室温、低温及高温状态下的力学性能进行测试,利用扫描电镜观察了合金板材的断口形貌.结果表明;采用低氧含量、两相区加工以及强化热处理工艺制备的Ti-6Al-4V合金板材可获得良好的强度、断裂韧性及塑性匹配.  相似文献   

9.
以经过两相区轧制得到的25 mm厚Ti-5111合金板材为研究对象,研究了不同热处理制度下板材的显微组织和力学性能。研究发现,800 ℃热处理后的组织为等轴组织,950 ℃热处理后的组织为双态组织,1 000 ℃热处理后为魏氏体组织。950 ℃热处理后板材综合性能最好,其Rm=870 MPa,Rp0.2=775 MPa,A=14%,AKV=81 J。分析了不同热处理温度下Ti-5111合金冲击试样的断口形貌,并分析了影响材料韧性的因素,发现Ti-5111合金板材的冲击韧性与组织类型有关,双态组织的冲击韧性最好,魏氏体组织的次之,等轴组织最差。板材焊缝的力学性能与母材相当,表现出优异的焊接性能。  相似文献   

10.
初始组织对Ti-6Al-4V合金高温变形机制影响研究   总被引:1,自引:0,他引:1  
研究了两种不同初始组织(魏氏组织、马氏体组织)Ti-6Al-4V合金在温度区间为700~750℃,应变速率为10~(-3)~1s~(-1)之间的高温变形行为。结果表明:初始组织对Ti-6Al-4V合金高温变形行为有着重要影响,初始魏氏组织Ti-6Al-4V合金主要发生了绝热剪切变形,在试样内部形成了绝热剪切带,绝热剪切带的密度随着温度上升和应变速率下降而减小;α′马氏体组织Ti-6Al-4V合金主要发生了稳态变形,在试样内形成了晶粒尺寸在亚微米级甚至纳米级的超细晶组织,晶粒尺寸和组织均匀性随着温度升高和应变速率减小而增大。α′马氏体组织的晶粒细化机制主要是连续动态再结晶,α′/α+β相变过程为再结晶的发生提供了重要的驱动力。  相似文献   

11.
Ti-6Al-4Mo(Cr,V)合金的组织特征及拉伸性能   总被引:1,自引:0,他引:1  
比较分析了Ti-6Al4Mo、Ti-6Al-4Cr、Ti-6Al-4V钛合金经热处理后的显微组织及拉伸性能.结果表明,在相同的热处理状态下,Ti-6Al-4Mo、Ti-6Al-4Cr、Ti-6Al-4V钛合金中的α相尺寸呈现Mo、Cr、V依次增大的趋势.而不论热处理状态是否相同时,单位质量合金元素的强化效果均按照Cr、Mo、V的顺序降低.三种合金在α+β两相区退火后,具有较好的塑性且塑性基本相当,但Ti-6Al-4Mo合金经β退火后拉伸塑性较低.  相似文献   

12.
采用电子束选区熔化(SEBM)技术制备Ti-6Al-4V Diamond点阵材料,研究β热处理(1100℃/2 h/FC)对其显微组织与力学性能的影响。结果表明,经β热处理后,Ti-6Al-4V Diamond点阵材料的显微组织由原始β柱状晶转变为等轴晶,针状马氏体α′相以及α+β细片层组织转变为相互平行的α+β粗片层组织,且α片层平均厚度由0.8μm增加至7.4μm。此外,Ti-6Al-4V Diamond压缩应变增加,最大可达13.1%,但强度降低;热处理对点阵材料的模量影响较小。点阵材料的结构与材料具有独立性,热处理不会改变Ti-6Al-4V Diamond点阵材料强度、模量与相对密度的指数关系。  相似文献   

13.
采用光学显微镜、透射电镜和拉伸试验等手段,研究了多道次两向轧制和单向轧制对不同原始状态(热轧态、水淬态和空冷态)Ti-6Al-4V合金显微组织和力学性能的影响。结果表明,热轧态Ti-6Al-4V合金的组织为片状α相+β相+少量等轴α相,水淬态Ti-6Al-4V合金形成了针状马氏体组织,空冷态Ti-6Al-4V合金形成了网状组织。Ti-6Al-4V合金适宜的两向轧制温度为700 ℃,此时合金中可见颗粒状β相弥散分布在α基体上。两向轧制Ti-6Al-4V合金的抗拉强度和屈服强度从高至低顺序为:水淬态>热轧态>空冷态,且轧向强度要高于横向;相较于单向轧制,两向轧制明显降低了Ti-6Al-4V合金板材拉伸性能的各向异性,且水淬态Ti-6Al-4V合金的轧向和横向强度差异最小,700 ℃轧制Ti-6Al-4V合金的主要细化机制为位错细化。  相似文献   

14.
针对Ti-6Al-4V合金汽轮机动叶片出现的组织异常,研究了两种热处理工艺对Ti-6Al-4V合金组织与性能的影响,并对锻造加热温度对该材料显微组织的影响进行了探讨。研究结果表明,Ti-6Al-4V合金汽轮机动叶片的组织异常是由于锻造加热温度过高或加热时间过长引起的,Ti-6Al-4V合金锻后采用固溶+时效或直接时效的热处理的方案都能满足产品毛坯性能要求,且锻后直接时效性能更优异。  相似文献   

15.
针对损伤容限型Ti-6Al-4V ELI合金δ200mm厚截面锻件,开展了β热处理工艺和准β热处理工艺试验,对比分析了热处理工艺对锻件的强度、塑性、断裂韧度、疲劳裂纹扩展速率的影响。研究结果表明,随着第一重退火温度从T<sub>b</sub>+15℃升高到T<sub>b</sub>+30℃、T<sub>b</sub>+60℃,锻件塑性下降明显。准β热处理工艺的塑性明显优于β热处理工艺,源于其β晶粒尺寸较小。强度、断裂韧度和疲劳裂纹扩展速率对β热处理工艺温度不敏感。为达到良好的强度-塑性-韧性的综合性能匹配,Ti-6Al-4V ELI钛合金厚截面锻件宜采用较低热处理温度(如T<sub>β</sub>+15℃)的β热处理工艺或准β热处理工艺。  相似文献   

16.
结合力学性能测试和OM、SEM分析,研究了不同板坯组织类型和热处理工艺对Ti6321合金组织与性能的影响。结果表明:合金板坯的组织类型对轧制板材的组织与性能状态具有显著影响,经相同工艺轧制后,等轴组织板坯形成双态组织板材,魏氏组织板坯形成等轴组织板材。(α+β)/β相变点以下热处理,等轴组织板坯制备板材的纵、横向的屈服强度和抗拉强度低于魏氏组织板坯制备板材对应方向的强度,延伸率和冲击功则相反;随加热温度的升高,不同板坯组织制备的板材其屈服强度、抗拉强度略有降低,冲击功则急剧升高。高于(α+β)/β相变点热处理,2种合金的拉伸性能和冲击功均明显下降。合金板材在α+β两相区热处理过程,初生α相对温度的敏感性高于对保温时间的敏感性。随着温度的升高,初生α相含量急剧下降,而次生片状α相含量明显增加。Ti6321合金板材适宜的热处理工艺为:(940~980℃)/(2~3) h。  相似文献   

17.
结合力学性能测试和OM、SEM分析,研究了不同板坯组织类型和热处理工艺对Ti6321合金组织与性能的影响。结果表明:合金板坯的组织类型对轧制板材的组织与性能状态具有显著影响,经相同工艺轧制后,等轴组织板坯形成双态组织板材,魏氏组织板坯形成等轴组织板材。(α+β)/β相变点以下热处理,等轴组织板坯制备板材的纵、横向的屈服强度和抗拉强度低于魏氏组织板坯制备板材对应方向的强度,延伸率和冲击功则相反;随加热温度的升高,不同板坯组织制备的板材其屈服强度、抗拉强度略有降低,冲击功则急剧升高。高于(α+β)/β相变点热处理,两合金的拉伸性能和冲击功均明显下降。合金板材在α+β两相区热处理过程,初生α相对温度的敏感性高于对保温时间的敏感性。随着温度的升高,初生α相含量急剧下降,而次生片状α相含量明显增加。Ti6321合金板材适宜的热处理工艺为:(940℃~980℃)×(2~3)h。  相似文献   

18.
钛合金因其优异的综合性能在各个工程领域都有很大的应用潜力,但较低的弹性模量限制了其在高强度、高刚性材料结构件中的应用。本文以开发综合力学性能良好的高弹性模量钛合金为研究目的,采用冷坩埚悬浮熔炼法制备了Ti-6Al-4Mo-xMn(x=0,1,2,3,4 wt%)合金,研究了Mn含量对合金显微组织和力学性能的影响。结果表明,Ti-6Al-4Mo-xMn合金由α和β相组成,未出现Ti-Mn相。随着Mn含量的增加,合金的α→β相变温度降低,合金中β相的体积分数增加,合金的组织变细,魏氏组织逐渐增多;合金的硬度从30 HRC增加到46 HRC,抗拉强度从838 MPa增加到1266 MPa,这是因为Mn元素在合金中引起了固溶强化和组织细化;合金的弹性模量呈现先升高后降低的趋势,当Mn含量为1 %时,合金的弹性模量最高,约136 GPa,同时抗拉强度为916 MPa,较Ti-6Al-4V合金分别提高24.0 %和3 %,综合力学性能最好。  相似文献   

19.
激光焊接对SPF/DBTi-6Al-4V合金疲劳性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
姚伟  巩水利 《焊接学报》2009,30(2):149-152
研究了SPF/DB Ti-6Al-4V合金及其激光焊接接头静态拉伸性能和疲劳性能,并获得S-N曲线.通过观察组织特征和疲劳断口形貌,分析了激光焊接对SPF/DB Ti-6Al-4V合金疲劳性能的影响.结果表明,SPF/DB T-6Al-4V合金激光焊接接头的抗拉强度略低于母材抗拉强度,而疲劳强度明显低于母材疲劳强度,约为其抗拉强度的40%.SPF/DB Ti-6Al-4V合金组织为α+β等轴细晶组织,其焊接接头组织为含α,针状马氏体α'和少量β相的魏氏组织结构.焊接接头组织结构的不均匀性,以及组织的粗大化是导致激光焊接接头疲劳性能下降的重要原因.SPF/DB Ti-6Al-4V合金疲劳断裂为塑性断裂,其焊接接头疲劳断裂为准解理断裂,这显著降低激光焊接接头的疲劳性能.而焊接气孔等焊缝表层微小几何不连续缺陷的存在往往成为激光焊接接头疲劳断裂的裂纹源.  相似文献   

20.
系统研究了β处理对Ti-6Al-4V钛合金组织和力学性能的影响。结果表明:β处理主要影响Ti-6Al-4V合金的晶粒尺寸,而对晶内组织形态影响较小。β晶粒尺寸是由β处理温度和保温时间共同决定的。在β处理温度为T_β+30℃条件下,只有当在β区保温时间100 min以上时,β晶粒才明显长大。当β处理温度为T_β+45℃时,70 min的保温时间就可使合金β晶粒明显粗化。不同β处理工艺下合金强度及断裂韧性波动较小,而塑性变化较大。T_β+30℃×70 min,空冷+730℃×150 min,空冷的热处理工艺能使合金获得较好的强度、塑性及韧性匹配。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号