首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 234 毫秒
1.
通过光学显微镜、X射线衍射仪、场发射扫描电镜、能谱仪、同步热分析等手段,研究了Ce含量对Al-5Cu合金显微组织和力学性能的影响。结果表明,加入Ce元素后,除了α-Al和Al2Cu相外还会生成针状Al8CuCe4相。合金固相线温度升高,液相线温度降低,凝固温度区间缩短,α-Al得以有效细化和均匀化。随着Ce含量增加,共晶Al8CeCu4相逐渐增多,Al2Cu相在Al8CeCu4相边缘附着生长,逐渐形成了沿晶界分布的封闭网状结构。经过T5热处理后Al2Cu相以粒状弥散析出,基体Cu含量增大,耐热性强的Al8CuCe4相形态基本不变。合金的抗拉强度、屈服强度和伸长率均先增大后减小。当Ce含量为0.3%时,合金力学性能最优,抗拉强度、屈服强度和伸长率分别为320 MPa、238 MPa和13.6%,较铸态的明显提高。  相似文献   

2.
采用拉伸性能和硬度测试、光学显微镜、扫描电镜和X射线衍射仪等手段研究不同Si含量对挤压铸造Al-5.0Cu-0.6Mn-0.7Fe合金显微组织和力学性能的影响。结果表明:当挤压压力为0时,随着Si含量的增加,凝固后期形成的富铁相阻止液相补缩,形成缩松组织,导致合金的抗拉强度、屈服强度和伸长率都下降;当挤压压力为75MPa时,随着Si含量增加,缩松组织消失,虽然细小和分散的α-Al15(Fe Mn)3(Si Cu)2相和Al2Cu相数量增多,但Al6(Fe Mn Cu)相消失,有利于晶界强化和阻止裂纹的扩展,使得合金的抗拉强度和屈服强度增加;虽然富铁相数量的增加使得合金伸长率降低,但挤压铸造工艺减缓了伸长率降低的趋势。当挤压压力为75 MPa和Si含量为1.1%(质量分数)时,合金的综合力学性能最好,其抗拉强度为232 MPa,屈服强度为118 MPa,伸长率为12.4%。  相似文献   

3.
为探究成品退火温度对铸轧坯料生产的3105铝合金冷轧板组织及力学性能的影响,通过拉伸机、光学显微镜、XRD、EPMA等检测设备及手段,探讨了不同温度退火后合金的力学性能、偏光组织、物相、析出相形貌及成分。结果表明:成品退火温度为320℃~400℃时,3105铝合金冷轧板的力学性能变化趋于稳定,抗拉强度为160 MPa~185 MPa,伸长率为13%~15%;成品退火温度为400℃~420℃时,合金的抗拉强度随温度升高而急剧下降,晶粒长大。3105铝合金物相以MnAl6相为主。为了避免Fe溶入MnAl6相形成(FeMn)Al6粗大片状聚集物,应将退火温度控制在400℃以下,w(Fe)控制在0.23%~0.35%。  相似文献   

4.
研究Si添加和压力对铸造Al-5.0Cu-0.6Mn-1.2Fe合金显微组织和力学性能的影响。结果表明,添加Si可促进α-Fe的形成,并抑制Al3(FeMn)和Al6(FeMn)的形成。对于重力铸造的合金,添加Si会增加孔洞的体积分数,导致合金的抗拉强度(UTS)和屈服强度(YS)显著降低。对于在75 MPa压力下制备的合金,Si添加促进高密度Al2Cu(θ)相的形成,从而使抗拉强度和屈服强度增加。在相同Si含量的合金中,力学性能随施加压力的增加而增加,这是由于孔洞减少、晶粒细化强化和固溶强化所致。合金最好的力学性能出现在压力为75 MPa和Si含量为1.1%时,其UTS、YS和伸长率分别为237 MPa、140 MPa和9.8%。  相似文献   

5.
在重力铸造条件下制备了不同Cu含量(4%~6%,质量分数,下同)Al-Cu-Mg-Sc合金,采用500 ℃×4 h+520 ℃×6 h的双级固溶,水冷后进行175 ℃×5 h时效。通过维氏硬度测试、室温拉伸性能测试试验、扫描电镜分析(SEM)等手段,研究了不同Cu含量对试验合金显微组织和力学性能的影响,进而优化Al-Cu-Mg-Sc铝合金成分。结果表明,经热处理后,随Cu含量从4.26%提高至5.58%,Al2Cu析出相含量持续提高,热处理后合金屈服强度从191 MPa提升至216 MPa,抗拉强度从323 MPa提升至355 MPa,伸长率维持在13%附近。然而,当Cu含量较高时(6.13%),微观组织中Al2Cu相体积分数较高,固溶后进入基体的Al2Cu相数目有限,有大量Al2Cu相残留在晶界处,经过时效处理后,合金的强化效果不能随Cu含量的增加而继续提升。因此整体上,随Cu含量提高,时效态高Cu含量合金的硬度和抗拉强度先增加随后趋于平稳,断后伸长率呈现先增加后降低的规律。Cu含量为5.58%的铸造Al-Cu-Mg-Sc铝合金时效后获得最佳综合性能,其硬度为117 HV,抗拉强度和屈服强度分别为355 MPa、216 MPa,断后伸长率为13.5%。  相似文献   

6.
研究了热处理对挤压态2195铝锂合金组织和力学性能的影响。结果表明,固溶处理和人工时效处理对挤压合金的力学性能有显著的增强作用,这与析出相的类型、尺寸、数量密度和分布有关。2195铝锂合金在时效过程中的析出顺序为过饱和固溶体(SSSS)→GP区+δ′/β′(Al3(Li,Zr))→δ′+θ′(Al2Cu) +T1 (Al2CuLi)→θ′+T1;其中T1相在析出强化中起主导作用。2195铝锂合金经过525 ℃×60 min固溶后在170 ℃人工时效的峰时效时间是36 h,此时抗拉强度、屈服强度和伸长率分别为579 MPa、537 MPa和5.5%。  相似文献   

7.
采用拉伸试验机、光学显微镜、扫描电镜、X射线衍射仪和三维纳米X射线显微镜等分析手段研究了铁含量对铸态Al-Fe合金力学性能和微观组织结构的影响。结果表明:随着铁含量的增大,铸态Al-Fe合金抗拉强度和屈服强度增大,断后伸长率下降。大量的球状Al6Fe析出相和杆状Al3Fe析出相分布在试验合金铸锭晶界附近,与铸态Al-1.8Fe合金相比,铸态Al-2.6Fe合金具有更小尺寸的晶粒和更大尺寸的Al3Fe析出相。尺寸更小的晶粒导致铸态Al-2.6Fe合金的强度高于铸态Al-1.8Fe合金,而铸态Al-2.6Fe合金伸长率更低的主要原因是具有更大尺寸的脆性Al3Fe析出相。  相似文献   

8.
特定Zn、Y含量的Mg-Zn-Y合金能原位形成二十面体准晶增强I相(I-Mg3Zn6Y),但常规铸造凝固条件下形成的准晶组织粗大,难以发挥其性能优势。研究了重力铸造、挤压铸造及流变挤压铸造工艺制备的Mg-12Zn-1Y合金的组织和力学性能。结果表明,在重力铸造的合金组织中,大量粗大的I相和Mg7Zn3相聚集在一起。挤压铸造使I相转变为细小的层片状,且Mg7Zn3含量降低。对于流变挤压铸造的合金,随着制浆过程中超声功率增大,α-Mg晶粒得到较大程度的细化和球化,共晶组织间距明显减小,而随着超声功率持续增加到2 400 W时,共晶组织出现一定程度富集。当超声功率为1 600 W时,合金的力学性能最优,屈服强度、抗拉强度和伸长率分别为185 MPa、276 MPa和6.8%,相较于挤压铸造分别提高了35.0%、24.9%和142.9%。  相似文献   

9.
采用显微组织观察、拉伸试验、密度测试等研究了不同挤压铸造压力对Mg-4Zn-1.2Y合金显微组织与力学性能的影响。结果表明:随着挤压压力的增加,Mg-4Zn-1.2Y合金的平均晶粒尺寸和第二相体积分数逐渐减小,挤压压力从0增加到150 MPa时,合金晶粒细化明显,挤压压力超过150 MPa后,合金晶粒细化趋势变缓。随着挤压压力的增加,Mg-4Zn-1.2Y合金的抗拉强度、屈服强度、伸长率及密度均逐渐增加。与挤压压力为0 MPa的合金相比,挤压压力150 MPa的合金抗拉强度、屈服强度和伸长率分别提高了24.4%、23.3%和72.7%,力学性能显著提高,挤压压力超过150 MPa后,合金力学性能提高幅度变缓。  相似文献   

10.
研究了高温退火和二次退火对冷轧后Ni40(FeCoCrAl)60高熵合金组织和性能的影响。结果表明,铸态合金由FCC+BCC双相组成。冷轧并再结晶后,合金保持稳定的相结构,FCC相由树枝晶转变为等轴晶,BCC相位于FCC相之间和FCC相之内。铸态合金的屈服强度和抗拉强度分别为450 MPa和870 MPa,伸长率为40%。室温冷轧后合金强度显著升高,屈服强度和抗拉强度分别是铸态合金的2.9倍和1.7倍,伸长率降至4%。再结晶退火使屈服强度和抗拉强度分别降为590 MPa和820 MPa,伸长率为12%。  相似文献   

11.
12.
Mg–6Zn–5Al–4RE (RE = Mischmetal, mass%) alloy was prepared by metal mould casting method. The microstructure and mechanical properties of the as-cast and heat-treated alloys were investigated. The results show that the phase compositions of the as-cast state alloy are supersaturated solid solution -Mg, lamellar β-Al12Mg17, polygonal Al3RE and cluster Al2REZn2 phases. The mechanical properties, especially the ultimate tensile strength and elongation of the alloy were significantly improved by the heat treatment. Fracture surface of tensile specimens was analyzed by optical microscope and scanning electron microscope.  相似文献   

13.
Mg-2Al-1.2Ca-0.2Mn(at%)-based alloys with Ce-rich mischmetal(MM) substitution of 0–0.6 at% for Ca were hot extruded at 400 °C. The effect of MM substitution on the microstructure and mechanical properties of the extruded alloys was investigated. The as-cast Mg-2Al-1.2Ca-0.2Mn alloy is mainly composed of a-Mg, Mg_2Ca and(Mg,Al)_2Ca phases and Al_8Mn_5 precipitates, whereas the substitution of MM brings about the formation of Al_(11)MM_3, Al_2MM phases and Al_(10)MM_2Mn_7 particles with the absence of (Mg,Al)_2Ca phase. The volume fraction of MM-containing phases increases with increasing MM contents. All of the extruded alloys exhibit bimodal microstructure comprising fine dynamically recrystallized grains with almost random orientation and coarse deformed grains with strong basal texture. Dense nanosized planar Al_2Ca and spherical Al–Mn phases precipitate inside the deformed grains. High tensile yield strengths of~ 350 MPa and moderate elongations to failure of 12% are obtained in all extruded alloys; the MM substitution induces negligible difference in the tensile properties at ambient temperature, while the highest MM substitution improves the strength at 180 °C due to the better thermal stability of the fragmented MM-containing phases.  相似文献   

14.
In this work, the effects of Zn content (0-2 wt%) on microstructural evolution and mechanical properties of cast Mg-10Gd-3.5Er-0.5Zr alloys are studied. The results show that the as-cast Mg-10Gd-3.5Er-xZn-0.5Zr alloys are mainly composed of Mg matrix and secondary (Mg, Zn)3(Gd, Er) phases distributed along grain boundaries. With the increase in Zn content, the volume fraction of secondary (Mg, Zn)3(Gd, Er) phases increases and the grains get refined. In the process of solid solution treatment, Zn addition can lead to the formation of long-period stacking ordered (LPSO) structures and the volume fraction of LPSO structures increases with Zn content. In addition, the Zn addition can reduce the vacancy formation energy and accelerate the diffusion rate of RE elements in Mg matrix. Because of the comprehensive effect of secondary phases and the accelerated diffusion rate, the base alloy and 2Zn alloy have less grain growth after solid solution treatment than that of the 0.5Zn alloy and 1Zn alloy. The precipitation process is also accelerated by enhanced diffusion rate. At room temperature (RT), the strengthening effect of β'+ β1 precipitates is more effective than that of LPSO structures, so the peak-aged 0.5Zn alloy exhibits the most excellent mechanical performance at RT, with yield strength of 219 MPa, ultimate tensile strength 296 MPa and elongation of 6.4%. While LPSO structures have stronger strengthening effect at elevated temperature than that of β'+ β1 precipitates, so the 1Zn alloy and 2Zn alloy have more stable mechanical performance than that of the base alloy and 0.5Zn alloy with the increase in tensile temperature.  相似文献   

15.
采用喷射成形技术制备了不同成分的Al98 - 3 xCu2 xFexNi1Ce0 .5Zr0 .5( 摩尔分数, % ) 合金快速凝固材料。重点研究了Cu , Fe 元素含量对合金微观组织、力学性能以及断裂机制的影响。研究结果表明, x < 2 时, 可有效避免粗大的Al7Cu2Fe 平衡相形成; x = 1 .5 时, 合金具有较好的综合力学性能,合金的抗拉强度、屈服强度、延伸率和弹性模量分别可达643 MPa ,558 .4 MPa ,8 .4 % 和80 .4 GPa 。  相似文献   

16.
采用常规凝固技术制备了MgZn6xYx(x=0.7,1.0,1.5,2.0)合金,研究了Y含量对含有二十面体准晶相(I相)MgZn6xYx合金组织和性能的影响。结果表明,MgZn6xYx合金由α-Mg基体和分布在晶界周围的(α-Mg+I相)共晶组织组成。随着Y含量增加,基体晶粒尺寸减小,共晶组织尺寸增大,含量增加,由不连续分布转变为连续分布。在凝固过程中,二十面体准晶相通过共晶转变形成。Mg89.5Zn9.0Y1.5合金的抗拉强度和伸长率达到最大值,分别为179.2MPa和3.5%。MgZn6xYx合金的断口呈现准解理断裂特征。  相似文献   

17.
The influence of Al alloying on the microstructures and the mechanical properties of Mg–x Al–1 Sn–0.3 Mn alloy sheets was investigated. The microstructure of Mg– x Al–1 Sn–0.3 Mn consisted of α-Mg and Mg 17 Al 12 precipitates. Alloying with Al increased the amount of Mg_(17)Al_(12) and the average grain size. Uniaxial tensile tests were carried out along the extrusion direction(ED), the transverse direction(TD) and 45° toward the ED. Mg–5 Al–1 Sn–0.3 Mn alloy sheet exhibited the best combination of mechanical properties along the ED: a yield strength of 142 MPa, an ultimate tensile strength of 282 MPa and an elongation of 23%. The good performance of Mg–5 Al–1 Sn–0.3 Mn sheet was mainly attributed to the large quantity of Mg_(17)Al_(12) precipitates and a weak basal texture. Annealing caused static dynamic recrystallization, refined the grain size and enhanced the mechanical properties: yield strength of 186 MPa, ultimate tensile strength of 304 MPa, elongation of 21% along ED. Both strength and ductility were enhanced by Al alloying.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号