首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
为了研究GH1016合金的高温热变形行为,利用Gleeble-3500热模拟试验机进行变形温度在1000~1150℃范围内,应变速率为0. 1~10 s-1,总压缩变形量为60%的热压缩试验,通过获得的真应力-真应变曲线研究了其变形行为。研究结果表明:真应力随变形温度的降低和应变速率的升高而增加。在一定的变形温度下,随着应变速率的增加,峰值应力和峰值应变均增加;在一定的应变速率下,随变形温度的升高,峰值应力和峰值应变减小。根据真应力-真应变曲线中的峰值应变和峰值应力数据,利用数据拟合的方法分别求得了GH1016合金的热变形本构方程和临界变形条件方程。在本实验条件下,GH1016合金发生动态再结晶的热激活能为456. 55 k J·mol-1。  相似文献   

2.
通过热模拟压缩试验研究了变形温度和变形速率对GH2674合金组织和性能影响,试验温度范围为950~1200℃,应变速率为0.01、0.05、0.1和1.0s-1,变形量为65%;同时采用有限元法模拟分析了GH2674合金大型涡轮盘的成形过程,创造性的提出局部成形的方法,并对局部成形过程中应变场及载荷分布情况进行分析,从而确定了GH2674合金大型盘件合适的热成形工艺,并生产出了符合标准要求的直径达φ2200mm的GH2674合金大型涡轮盘锻件。  相似文献   

3.
采用Gleeble-1500热模拟机对GH738镍基高温合金进行高温热压缩变形实验,分析该合金在变形温度1000~1160℃、应变速率0.01~10s-1、工程变形量15%~70%条件下流变应力的变化规律。确定GH738合金热变形方程,建立热加工图(Processing map),并通过组织观察对热加工图进行解释。GH738合金热变形激活能Q为499kJ/mol;热加工图随不同变形量而变化,在应变速率较低,温度较高的状态下,能量耗散效率较高。综合应变量为0.2,0.4,0.6和0.8应变量下的热加工图,确立了该合金最佳热加工"安全通道",为GH738高温合金热加工工艺优化提供理论依据。  相似文献   

4.
GH4169合金热加工过程中的显微组织演化数学模型   总被引:6,自引:0,他引:6  
采用Thermecmastor—Z型热加工模拟试验机对GH4169合金热态变形过程中(温度范围为960~1020℃,应变速率范围为10^-2~50s^-1,等效应变范围为0.357~0.916和变形后高温滞留阶段内(滞留时间为0~15s)的显徽组织演化过程进行了实验研究,定量地测定了试样内的动态再结晶晶粒尺寸和再结晶体积分数。根据实验结果,指出了GH41.69合金热加工过程中的主要显微组织演化过程是动态和亚动态再结晶,确定了峰值应力和峰值应变与锻造热力参数间的关系,建立了动态再结晶和亚动态再结晶过程的运动学方程和晶粒尺寸演化模型,从而为预测和控制GH4169合金锻件的组织性能提供了依据。  相似文献   

5.
Ti600合金的高温本构方程   总被引:1,自引:0,他引:1  
采用热模拟压缩试验研究了Ti600合金在变形温度为800~1100℃、应变速率为0.001~10s^-1范围内应力一应变曲线的变化规律。研究结果表明:Ti600高温钛合金热变形的流变应力随温度的升高和应变速率的降低而减小;随着应变的增大,合金的真应力一真应变曲线在经历了明显的加工硬化阶段后达到最大值,然后渐渐出现流变“软化”现象。以经典的双曲正弦形式的模型为基础建立了Ti600合金热变形的本构方程,同时也通过对数据回归处理确定了合金不同温度下的应力指数n、应变激活能Q等数值。  相似文献   

6.
利用MSC.SuperForm有限元分析软件对In718合金镦粗过程进行三维数值模拟和试验研究.分析了不同温度、摩擦和变形速率条件下等效应力-应变分布和载荷曲线。通过热模拟试验研究了In718合金不同条件下的真应力-应变曲线和微观组织。结果表明:镦粗变形分为三个变形区域,摩擦增加了变形的不均匀性和塑性变形抗力:高温锻造过程中,In718合金在基体边界上发生了动态再结晶,再结晶晶粒细小,动态再结晶进行程度随着工艺条件的不同而不同;In718合金比较合适的锻造温度为1010-1040℃之间,变形速率为0.05~0.5s^-1之间,最大变形程度可以达到70%以上。  相似文献   

7.
在Gleebe-1500热模拟机上对0H4049合金进行了热模拟压缩实验,采用动态材料模型建立了合金的热加工图.基于热加工图研究了GH4049合金在温度为1060~1180℃、应变速率为0.1~50s-1条件下的热变形特性.结果表明,GH4049合金的热变形失稳区域集中在温度为1060~1110℃、应变速率为0.7~50s-1及温度为1120~1180℃、应变速率为1.8~50s-1的两个区域内;在合金的热变形稳定区域内,温度为1110~1175℃、应变速率为0.1~1.8s-1是合金典型的动态再结晶区域,对应的峰值效率为32%.  相似文献   

8.
利用GLEEBLE-3500热模拟试验机完成了变形温度为1000~1150℃,应变速率为0. 1~10 s~(-1),变形量分别为20%、40%和60%的热压缩试验,获得了各试验条件下GH1016合金的真应力-真应变曲线,并利用数据拟合的手段求得了GH1016合金的临界变形条件方程。同时,得到了所有变形条件下的再结晶组织,分析了变形工艺对GH1016合金的动态再结晶过程的影响规律,最终获得了GH1016合金在试验条件下的动态再结晶状态图,可为生产现场的锻造工艺的合理制定提供理论参考依据,尤其适用于GH1016合金的精锻工艺的制定和优化。  相似文献   

9.
采用Gleeble-3500热模拟机研究了GH708合金在变形温度1000℃~1200℃,应变速率为0.001s-1~1s-1条件下的热变形行为.确定了GH708合金的热变形方程,建立了其热加工图(Processing Map),并通过组织观察对其热加工图进行了解释.GH708合金的热变形激活能Q为493 kJ/mol;不同真应变下的热加工图相似,随着变形温度的升高及应变速率的降低,能量消耗效率η逐渐升高.真应变为0.6时,在变形温度为1150℃左右、应变速率为0.001 s-1时,能量消耗效率达到峰值,约为56%.该结果为GH708合金的热加工工艺优化提供了理论依据.  相似文献   

10.
GH708高温合金热变形行为   总被引:1,自引:0,他引:1  
采用Gleeble-3500热模拟机研究了GH708合金在变形温度1000℃~1200℃,应变速率为0.001s-1~1s-1条件下的热变形行为.确定了GH708合金的热变形方程,建立了其热加工图(Processing Map),并通过组织观察对其热加工图进行了解释.GH708合金的热变形激活能Q为493 kJ/mol;不同真应变下的热加工图相似,随着变形温度的升高及应变速率的降低,能量消耗效率η逐渐升高.真应变为0.6时,在变形温度为1150℃左右、应变速率为0.001 s-1时,能量消耗效率达到峰值,约为56%.该结果为GH708合金的热加工工艺优化提供了理论依据.  相似文献   

11.
在变形温度为1050~1180℃、应变速率为0.1~10s-1、最大真应变为0.7的条件下,采用Gleeble-3500热模拟试验机研究GH4199合金的热压缩变形行为,得到该合金的热变形激活能及热变形方程式,建立合金的热加工图,并通过组织观察对其热加工图进行解释。结果表明:在实验条件下,GH4199合金均表现出动态再结晶特征;变形温度和应变速率对合金流变应力及相应峰值应变大小的影响显著,流变应力及峰值应变均随着变形温度的降低和应变速率的增加而增大;在真应变为0.1~0.7时合金的热加工图相似,随着变形温度的升高及应变速率的降低,能量消耗效率逐渐升高;在应变速率为0.01s-1时,能量消耗效率达到峰值,约为41%。  相似文献   

12.
采用热模拟压缩试验研究了Ti600合金在变形温度为800~1100℃、应变速率为0.001~10s-1范围内应力-应变曲线的变化规律。研究结果表明:Ti600高温钛合金热变形的流变应力随温度的升高和应变速率的降低而减小;随着应变的增大,合金的真应力-真应变曲线在经历了明显的加工硬化阶段后达到最大值,然后渐渐出现流变“软化”现象。以经典的双曲正弦形式的模型为基础建立了Ti600合金热变形的本构方程,同时也通过对数据回归处理确定了合金不同温度下的应力指数n、应变激活能Q等数值。  相似文献   

13.
采用Gleeble-3800热模拟试验机热模拟压缩试验研究了GH2150合金在不同试验参数下的热变形行为和再结晶演变规律。结果表明,在1000~1200℃范围内,应变速率为0.1~5 s-1,变形量分别为30%、50%、70%条件下,合金峰值应力随变形温度升高而降低,随应变速率降低而降低。结合真应力-真应变曲线及阿伦尼乌斯公式得到了GH2150合金的热变形本构方程,采用该方程得到的计算结果与实际结果的平均相对误差为4.36%,相关系数R=0.992,具有较好的吻合性。绘制GH2150合金动态再结晶图发现大变形量有利于提高再结晶分数,合金再结晶行为在50%变形量下主要受变形温度影响,在70%变形量下采用低应变速率更有利于再结晶发生。  相似文献   

14.
坯料形状对锻件的组织均匀性产生重要影响,为提高GH4169高温合金锻件的综合力学性能,该文以圆柱体镦粗为例,采用数值模拟技术分析不同的坯料形状对最终锻件的等效应变、等效应变速率、平均晶粒度以及再结晶体积分数的影响规律,分析坯料形状与锻件最终组织均匀性之间的关系,证明改变坯料形状可以有效提高锻件难变形区域的组织均匀性。  相似文献   

15.
为研究一种航天用超大规格GH4169高温合金螺栓热镦工艺,利用热模拟试验机对材料进行了高温压缩实验,分析了不同变形温度和应变速率对材料变形抗力的影响,并对GH4169高温合金螺栓的热镦成形过程进行了数值模拟,分析了成形过程中等效应力场分布、损伤值分布、金属流线分布、摩擦因数对成形载荷的影响,最后进行了工艺实验。研究结果表明:应变速率一定时,随着变形温度的升高,材料的变形抗力逐渐降低;变形温度一定时,随应变速率的增大,材料的变形抗力逐渐增大;摩擦因数μ=0.3时成形过程中的最大载荷为3.56×106 N,摩擦因数μ=0.5时成形过程中的最大载荷为4.11×106 N。工艺实验得到的GH4169高温合金螺栓锻件充填饱满,尺寸符合要求,未发现锻造缺陷,符合航天领域使用需求。  相似文献   

16.
通过TA15多组试样的热物理模拟压缩试验获得了温度1073~1323K、应变速率0.01~10 s-1下的真应力-真应变数据,以此作为计算应变速率敏感指数(m值)的底层材料模型.以一组拟合图和3-D曲面揭示了应力、温度、应变速率和应变量共同作用诱导多种变形机制变化及同时存在将引起应变速率敏感系数m值的剧烈响应.通过m值的正负判断了变形稳定区与失稳区,为建立TA15合金高温变形时的加工图并合理制定锻造工艺,为有效控制及提高构件性能和质量提供了依据.  相似文献   

17.
GH625镍基合金的高温压缩变形行为及组织演变   总被引:2,自引:0,他引:2  
在Gleeble-1500D热模拟机上采用等温压缩实验研究GH625合金的高温压缩变形行为,获得合金在温度为1000~1200℃、应变速率为10-2~10s-1的条件下的真应力—应变曲线,并在考虑摩擦和变形热效应的基础上对真应力—应变曲线进行修正。对修正后的峰值应力进行线性回归,得到合金的高温材料常数:Q=635.38kJ/mol,α=0.008404MPa-1,n=3.52。通过非线性回归建立GH625合金包含应变量的高温变形本构模型。在应变速率为0.1s-1时,随着热变形温度的升高,合金发生动态再结晶的体积分数随之增加,在1000~1100℃发生部分动态再结晶,当温度达到1200℃时,发生完全动态再结晶,此时平均晶粒尺寸约为22.21μm。  相似文献   

18.
通过热压缩实验,研究了GH3230合金在温度950~1220℃和应变速率0. 1~10 s~(-1)条件下的高温热变形行为,构建了高温变形抗力数学模型,并分析了微观组织的变化。结果表明:随着应变速率的增加和变形温度的降低,材料的高温变形抗力增大;变形温度的提高和应变速率的增加有利于动态再结晶的发生和动态再结晶晶粒的长大; GH3230合金高温变形抗力可用Zener-Hollomon参数的高精度双曲正弦函数描述,其中热变形材料常数为:A=1. 22279×1028,n=8. 64987,α=0. 00284,平均变形激活能Q=742. 335 k J·mol~(-1);对于GH3230合金,采用高温和低应变速率可以获得优良的热加工等轴晶粒组织和低的加工变形抗力。  相似文献   

19.
15Cr-25Ni-Fe基合金高温塑性变形行为的加工图   总被引:12,自引:1,他引:12  
鞠泉  李殿国  刘国权 《金属学报》2006,42(2):218-224
在Gleeble-1500热模拟机上对15Cr-25Ni-Fe基合金GH2674进行了热压缩实验,采用动态材料模型的加工图研究了其在950-1200℃和0.001-10S^-1条件下的热变形行为.结果表明:GH2674合金在热变形时呈现两个微观机制不同的动态再结晶峰区.再结晶Ⅰ区:功率耗散效率峰值为38%,峰值对应的温度和应变速率分别为1040℃与10s^-1;再结晶Ⅱ区:功率耗散效率峰值为40%,峰值对应的温度和应变速率分别为1075℃与0.04s^-1.在1075-1100℃温度区间内,可能是晶界相M382的溶解造成该合金的晶粒粗化,这在一定程度上会影响合金的热加工性能.在应变速率小于0.01s^-1、形变温度高于1050℃条件下,合金呈现晶粒急剧粗化现象,进而导致在热变形过程中楔形裂纹的产生;在应变速率高于0.1s^-1、形变温度低于1000℃条件下,合金有出现剪切变形带的趋势.根据上述加工图对GH2674合金的热变形工艺进行了初步设计.  相似文献   

20.
在Gleeble-1500热力模拟机上对铸态GH4169合金进行热压缩试验,变形参数为:温度(1193~1373K)、应变速率(0.01~10s~(-1))、变形量50%。通过分析真应力真应变曲线,研究铸态GH4169合金的热变形行为;对比分析了Johnson-Cook(JC)、修正的Johnson-Cook(MJC)和应变补偿Arrhenius3种本构模型的相关系数(R)和平均相对误差(AARE)。结果表明:铸态GH4169合金的流变应力随变形温度的升高和应变速率的降低而减小。JC模型、MJC模型和应变补偿的Arrhenius本构模型的相关系数(R)分别为0.891、0.956和0.961,AARE依次为29.02%、11.16%和9.31%。因此,应变补偿的Arrhenius模型能够更为精确地描述铸态GH4169的热变形行为。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号