首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用分子静力学模拟密排六方金属锆中孪晶界与螺位错之间的交互作用。在移动晶界模型中,研究一个移动的{1012}孪晶界与一个静止的1120螺位错之间的交互作用。在此类交互作用中孪晶位错的形核与移动起到了重要的作用。静止的螺位错穿过了孪晶界并转换为基面上的一个具有宽位错芯的缺陷。在移动位错模型中,一个移动的1120位错穿过孪晶界并转换为两个基面部分位错及它们之间的一段极短的层错。如果在同一个模型中将孪晶界置换为{1011}类型,这个移动的1120柱面螺位错将被完全吸收并分解为孪晶界上的两个孪晶位错。分析相应的应力-应变曲线与缺陷结构,揭示位错与孪晶界之间的复杂交互作用。  相似文献   

2.
通过分子动力学模拟(MD),研究在HCP镁中的一个对称倾斜晶界与基面滑移的位错相互作用而激发的变形孪晶,也就是孪晶形核与长大的过程(或者是孪晶界迁移,TBM)。{1^-1^-21}孪晶在该过程中是最易被激发的孪生模式。一旦这样的孪晶形成了,它们就会不断长大。该种孪晶界迁移是由单纯的原子位置局域调整造成的。在模拟过程中同时也产生了二次孪晶{1^-1^-22}。该二次孪晶模型的孪晶形核与长大需要克服的能垒与{1^-1^-21}孪晶不同。同时,二次孪晶的孪晶界迁移过程是通过孪晶界上的锥形滑移而激发的。  相似文献   

3.
对AZ31镁合金铸轧板进行单道次热轧实验,利用光学显微镜、X射线和透射电镜对热轧过程中微观组织和织构的演变规律进行研究。结果表明:AZ31镁合金铸轧板具有较强的基面织构,当热轧变形量较小时,孪生是主要的变形机制;当热轧变形量较大时,位错滑移成为主要的变形机制;10%热轧态中出现的透镜状的{1012}宽孪晶使基面织构明显减弱;20%热轧过程中则出现{1012}、{1011}-{1012}两种不同形貌的孪晶;当变形量大于20%时,位错滑移大量开动,基面织构也显著增强,并在随后的退火过程形成细小均匀的再结晶组织。  相似文献   

4.
五重孪晶结构能够改善合金的表面性能,而关于合金五重孪晶化表面的研究较少报道。基于分子动力学模拟和纳米压痕方法,采用嵌入原子势函数(EAM)和等温等压系综(NPT),使用半径为14 nm的圆柱压头以40 m/s的压痕速度沿着[112]晶向对单晶镍基合金持续压痕,采用共领域分析法对合金在应力诱导作用下的变形行为进行了分析。结果表明,非共格孪晶界形成于四个不同{111}滑移面交叉中心附近。交叉中心处白色高能原子发射不全位错,堆垛层错产生。随着不全位错持续发射,孪晶得以形核、生长,孪晶界相继形成,最终五重孪晶形成于合金表面。合金表面中五重孪晶的形成并非源于晶界连续不断发射不全位错,而是与压痕过程中合金表面能量增加以及非共格孪晶界息息相关。  相似文献   

5.
利用{1012}孪晶结构调控镁合金织构和组织,可作为开辟一条低成本生产高性能镁合金的路径。探索{1012}形变孪生新的特点和规律,揭示{1012}孪生变形的物理本质是利用{1012}孪生变形调整镁合金组织和性能的关键。对国内外学者应用孪生晶体学理论、分子动力学计算机模拟和透射电镜等研究手段探索{1012}形变孪晶长大机制进行综述。重点对{1012}孪晶界面精细结构以及{1012}孪晶长大机制(孪生位错剪切机制和曳步机制)进行总结与评述。针对目前国内外学者在{1012}孪生机制中存在的重大争议,有必要丰富实验研究及计算机模拟结果,进一步探索{1012}孪生长大机制,从而为利用{1012}孪晶调控镁合金力学性能的研究奠定理论基础。  相似文献   

6.
形变孪生是镁合金的主要塑性变形方式之一,镁合金的两种主要孪晶为■孪晶,两种常见孪晶在形貌上存在较大的差异。本文采用分子动力学模拟与微观组织实验观察相结合的手段,研究了两种孪晶压缩过程的应力应变曲线、微观结构以及界面的迁移方式,对比分析两种孪晶界面的可动性。并且从原子运动以及位错滑移的角度,解释两者存在差异的原因。结果表明:■孪晶界迁移所需的应力较■孪晶界迁移所需的应力低,并且■孪晶界的迁移呈现"弓形"方式,而■孪晶界以"台阶"的方式进行迁移。■孪晶界的迁移是B/P面相互转变的过程,因而界面更容易大范围、高速率地迁移;而透射电镜(TEM)观察和模拟结果均显示,■孪晶界面上存在周期性的界面位错,阻碍了孪晶界的移动,并且需有基面位错滑移至孪晶界面处堆积,为■孪晶界的迁移提供能量。  相似文献   

7.
通过SEM原位拉伸实验观察室温下多晶Be的变形、裂纹萌生和扩展过程,利用电子背散射衍射(EBSD)标定断裂解理面,结合OM分析孪晶变形,研究多晶Be室温拉伸变形和断裂行为及其机理.结果表明,室温拉伸应力条件下,多晶Be的滑移和孪晶变形均难以发生.滑移带仅在少数取向有利的晶粒中出现,最终孪晶变形晶粒约占晶粒总数的5%.变形过程中存在(0001)基面和{1010}柱面之间的交滑移.多晶Be的微裂纹起源于晶界一侧,发生穿晶扩展后,在另一侧晶界终止,裂纹萌生符合Stroh位错塞积生裂纹理论.因晶界对裂纹强烈的阻碍作用,多晶Be的裂纹长大依靠不同微裂纹之间的汇合,汇合路径有解理台阶和撕裂2种.多晶Be断裂基本解理面为(0001)基面和{1010}柱面,两者均是多晶Be解理萌生和扩展的主要路径.未观察到因孪晶变形诱发的微裂纹.  相似文献   

8.
本文系统总结了Mg中{1012}-{1012}双拉伸孪晶及其构成的复合孪晶结构的研究进展。连续多向变形可以显著降低Mg的拉/压不对称性,其基本步骤是连续双向变形,该过程在Mg中激发大量双拉伸孪晶形成,它有36个变体,可分为4个取向差组,其中一组显著择优,无法用Schmid因子(SF)完全解释。一次和二次拉伸孪晶在晶界处或晶内孪晶界处交汇,形成晶间或晶内复合孪晶结构,它们的形成路径具有多样性。SF法则和衡量孪生切变穿越界面的m'因子,对解释晶间或晶内复合孪晶结构的形成,部分或者完全失效,这对人们揭示较复杂条件下孪晶的形成机理提供了机遇和挑战。建议未来的工作重点围绕模拟晶内复合孪晶结构的形成以及实验观察一次拉伸孪晶间界面和二次拉伸孪晶界的界面结构展开。  相似文献   

9.
采用金相显微镜(OM),扫描电镜(SEM),透射菊池衍射(TKD)和透射电子显微镜(TEM)表征技术,研究了高周疲劳变形后的Mg-3Al-1Zn镁合金的典型断口组织特征,二次孪晶内部的横切面区域被提取出来进行TEM和TKD观察。结果显示断口边缘附近的区域有大量的{1012}{1012}二次孪晶,双束明场技术(TBBF)应用于研究二次孪晶边界的位错类型。研究发现锥面位错在{1012}-{1012}二次孪晶内部被大量的激活,这被认为锥面位错与二次孪晶有关联。二次孪晶内部的局部应力集中将导致锥面位错的形成。  相似文献   

10.
为了研究Ti6321合金在不同温度下的服役性能及其塑性变形机制,在–196~400℃下对其进行拉伸性能测试并对断口形貌和显微组织进行分析。结果表明,随着温度的升高屈服强度和抗拉强度逐渐降低,屈强差和断面收缩率逐渐增大;延伸率在–100℃降至16.0%,之后随着温度的升高而升高。不同温度下Ti6321合金的塑性变形机制有所不同。25℃下Ti6321合金塑性变形机制主要为柱面滑移。–196℃下Ti6321合金的位错滑移受到抑制,此时等轴α相滑移类型为柱面滑移、一级锥面滑移,片层α相滑移类型为基面滑移和二级锥面滑移;但{1012}和{1122}孪晶开动使塑性得到恢复,变形机制为滑移、孪生共存,以滑移为主。200℃和400℃下Ti6321合金位错交互作用强烈,可发现位错网等位错组态特征,同时有少量{1012}孪晶开动,变形机制主要为位错滑移。等轴α相与片层α相中的滑移类型相同,为柱面滑移和二级锥面滑移。  相似文献   

11.
采用SEM和EBSD研究了电铸铜在不同温度退火后的微观组织、晶粒取向以及特殊晶界的变化规律。结果表明:电铸铜退火前组织细小,平均晶粒尺寸约为2μm,随退火温度的升高,晶粒逐渐增大,650℃退火后,平均晶粒尺寸达到9.6μm;电铸铜主要存在{110}、{001}、{111}三种织构,{110}织构组分含量最多,退火处理有利于形成{001}织构,随退火温度的升高,{110}、{111}织构逐渐减少;电铸铜中存在大量分布取向差为60°的∑3共格孪晶界,电铸完成后,{001}晶粒相对较大,并且周围∑3晶界较少;较低温度退火时,{001}晶粒由于自身晶粒之间晶界易迁移而长大,在650℃退火时,大尺寸的{001}取向晶粒吞并周围其它取向晶粒而长大。  相似文献   

12.
通过对轧制态AZ31镁合金板材进行多向预压缩,运用塑性变形的方式,产生了{1012}一次拉伸孪晶和{10 1 2}-{10 1 2}二次拉伸孪晶,并结合EBSD表征和XRD分析,对预压缩后材料的拉伸压缩实验的结果表明,预压缩对镁合金拉压不对称性的降低和强度的提高有明显效果。交叉预压缩之后,由于产生了孪生,材料组织晶粒细化,使得材料在再变形时,屈服强度和最大强度均明显增强。产生的拉伸孪晶片层可以有效地改变晶粒的取向,在一定程度上削弱了基面织构,在{1012}一次拉伸孪晶中产生了{1012}-{1012}二次拉伸孪晶,二者结合作用,改善了材料的再变形行为,从而降低了镁合金板材的拉压不对称性。  相似文献   

13.
本文基于分子动力学模拟,通过研究钛单晶纳米柱在拉伸和压缩下的力学响应特征及晶体结构演化行为,揭示其塑性变形机制。结果表明沿[0001]晶向拉伸条件下主要塑性变形机制为伴生的{101 ?2}孪晶和基面层错;而沿[0001]晶向压缩条件下,基面位错作为优先形核的缺陷参与到塑性变形过程,随后锥面位错出现并协调了轴向和横向变形,压缩条件下无孪晶产生。拉伸模拟过程中观察到一种有别于传统孪生的晶体再取向现象,其孪晶与基体间呈现基面/柱面对应关系。  相似文献   

14.
以含长周期堆垛有序(LPSO)结构的Mg-Zn-Y(-Zr)合金为研究对象,运用透射电子显微方法,从原子尺度解析LPSO结构/富含溶质元素堆垛层错(SFs)对■孪晶交汇行为的作用。结果表明:LPSO/SFs与孪晶交截处易形成基面-棱柱面,从而引起孪晶界在LPSO/SFs间弯曲成弓形,孪晶界存在Zn元素偏聚,Y元素偏聚不明显。LPSO/SFs间同轴■孪晶变体交汇,引入基面-基面(BB)界面及柱面-柱面(PP)界面,且在近LPSO/SFs处产生三角形的局部基体结构。LPSO结构形成扭折时,■孪晶在扭折界面单侧形核长大,此处扭折界面转为孪晶界面;残余扭折界面与基体侧孪晶扩展界面相交,在LPSO/SFs近邻处形成三角形的基体结构。LPSO/SFs/TSFs (孪晶层错)间不同孪晶变体形核,以及交汇引入的分割带来的Hall-Petch效应,可提升合金的硬化率。通过调控镁合金LPSO结构的间距和厚度引入不同孪晶变体,可为其优化性能提供新思路。  相似文献   

15.
赵林若  张少卿 《金属学报》1990,26(1):A026-A031
本文采用TEM系统操作方法分析了Ti-6Al-4V合金超塑性变形中α相激活的滑移系统。结果表明α相以{0110}〈2110〉和{0111}〈2110〉激活为主,降低变形温度{0001}〈2110〉基面滑移及b=〈1123〉的α+c型位错亦参与变形。大量观察还表明,α相中激活的位错主要分布在三岔晶界、α/α晶界、以及α/β相界附近。  相似文献   

16.
本文采用TEM系统操作方法分析了Ti-6Al-4V合金超塑性变形中α相激活的滑移系统。结果表明α相以{0110}〈2110〉和{0111}〈2110〉激活为主,降低变形温度{0001}〈2110〉基面滑移及b=〈1123〉的α+c型位错亦参与变形。大量观察还表明,α相中激活的位错主要分布在三岔晶界、α/α晶界、以及α/β相界附近。  相似文献   

17.
应用真空热侵蚀方法,研究Armco铁晶粒长大晶界迁移过程中,退火孪晶形成的过程。观察到在低于A_3点退火后,在了770℃短时间保温,多数α-铁素体晶粒内出现细小亚结构。随着加热时间的延长,具有细小亚结构的晶粒逐渐消失,原先不含亚结构的晶粒,则逐渐长大。将加热温度提高至A_3点附近,显著加速晶界迁移的过程。在长大的晶粒中,出现两类退火孪晶。一类的性质与一般退火孪晶相似,似其非共格孪晶界经常出现于旧晶界附近。视晶粒间界与非共格孪晶界迁移的情况,这类退火孪晶在保温过程中,可能随晶界迁移而伸长,亦可能随非共格孪晶界迁移而变细或消失。另一类孪晶的特点是一端在晶粒间界上,另一端呈楔状。楔状孪晶界很稳定,在保温过程中,未发现任何变化,在晶粒间界上的一端,则与晶粒间界一起,发生迁移。根据观察结果,认为α-铁中退火孪晶形成的机构与Burke及Furnbull所提出的面心立方金属中退火孪晶形成的机构相似,退火孪晶的形成与晶粒间界迁移有密切关系。  相似文献   

18.
应用真空热侵蚀方法,研究Armco铁晶粒长大晶界迁移过程中,退火孪晶形成的过程。观察到在低于A_3点退火后,在了770℃短时间保温,多数α-铁素体晶粒内出现细小亚结构。随着加热时间的延长,具有细小亚结构的晶粒逐渐消失,原先不含亚结构的晶粒,则逐渐长大。将加热温度提高至A_3点附近,显著加速晶界迁移的过程。在长大的晶粒中,出现两类退火孪晶。一类的性质与一般退火孪晶相似,似其非共格孪晶界经常出现于旧晶界附近。视晶粒间界与非共格孪晶界迁移的情况,这类退火孪晶在保温过程中,可能随晶界迁移而伸长,亦可能随非共格孪晶界迁移而变细或消失。另一类孪晶的特点是一端在晶粒间界上,另一端呈楔状。楔状孪晶界很稳定,在保温过程中,未发现任何变化,在晶粒间界上的一端,则与晶粒间界一起,发生迁移。根据观察结果,认为α-铁中退火孪晶形成的机构与Burke及Furnbull所提出的面心立方金属中退火孪晶形成的机构相似,退火孪晶的形成与晶粒间界迁移有密切关系。  相似文献   

19.
基于分子动力学理论,建立沿C轴以及10 10(垂直C轴)方向进行单轴压缩的模型,结合两种模型的应力-应变曲线,分析镁单晶沿不同取向压缩的微观变形机制。结果表明,沿C轴压缩时模型的压缩弹性模量较大,说明该取向难变形。且该模型先发生基面不全位错滑移(柏氏矢量b→1=1/3 10 10)以及锥面位错滑移(柏氏矢量b→2=1/6 02 23),其次在位错畸变区形核产生{10 11}孪晶。此外,在晶体内部观察到两种不同类型的{10 11}孪晶变体。沿垂直C轴方向压缩过程中,首先会形成大量的紊乱点,为位错以及孪晶的产生提供形核点。进一步加载时,会出现{10 12}孪生过程,且{10 12}孪晶迅速吞噬基体,模型变为沿C轴方向压缩变形,最后在位错堆积的畸变区形核生成{10 11}二次孪晶。  相似文献   

20.
利用背散射电子衍射(EBSD)技术对高纯钛形变组织中同一个晶粒内部出现的{1122}和{1124}压缩孪生进行了研究。结果表明:{1124}孪晶总是伴随{1122}孪晶在同一晶粒中产生,在变形组织中没有发现单独存在的{1124}孪晶;这种极少出现的{1124}压缩孪晶主要由{1122}孪晶与传统晶界或{1122}孪生变体之间交互作用改变了局部应力状态而诱发的。在同一个晶粒中,由{1122}孪晶诱发的{1124}孪晶更倾向于同其中一个{1122}孪生变体具有相同的转轴。此外,根据晶体对称性及相同晶粒中{1122}和{1124}孪晶之间的取向关系,{1122}和{1124}孪晶之间可发生孪晶反应并形成4种不同类型的孪晶反应界面。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号