首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
针对CO_2复合蒸汽驱采出井抽油杆的腐蚀问题,在高温高压釜中进行了模拟腐蚀试验,研究了温度(60~120℃),CO_2分压(0.1~0.3 MPa)和氯离子含量(1~3 g/L)对抽油杆腐蚀的影响,并建立了预测抽油杆腐蚀速率的数学模型,绘制了综合考虑多因素的腐蚀速率预测图版。结果表明:随温度的升高,抽油杆的腐蚀速率先升高后降低,90℃时达最大值(0.939 1 mm/a);随着CO_2分压和氯离子含量的升高,腐蚀速率均逐渐增大,腐蚀主控因素为CO_2分压;腐蚀预测图版的预测结果与试验结果吻合良好,腐蚀预测图版具有较好的预测精准度和实用性。  相似文献   

2.
通过高温、高压腐蚀模拟试验和腐蚀理论分析,研究了某气田气井井筒材料80SS钢在不同H_2S分压(0.005~0.1MPa)、CO_2分压(0.1~1.0 MPa)及温度(30~90℃)下的腐蚀规律。结果表明:在CO_2分压为1.5MPa,温度为80℃条件下,随着H_2S分压的增大,80SS钢的腐蚀速率由1.69mm/a降低至0.12mm/a,当H_2S分压为0.1MPa时,试样表面出现细小的点蚀坑;当H_2S分压为0.01 MPa,温度80℃时,随着CO_2分压的增大,80SS钢的腐蚀速率增大,发生极严重腐蚀;当温度由30℃升高至90℃,80SS钢的腐蚀速率由0.24mm/a逐渐增大至0.98mm/a,腐蚀产物晶粒变大,试样表面腐蚀产物覆盖不完全,逐渐出现局部腐蚀风险。  相似文献   

3.
许宏良  殷苏民 《表面技术》2017,46(1):206-210
目的预测输气金属管道表面腐蚀速率。方法分析动态杂散电流和二氧化碳(CO_2)浓度对金属管道的表面腐蚀机理,给出金属管道表面腐蚀产生的化学反应方程式。根据一元回归线性方程式得出多元线性回归数学方程式,推导出动态杂散电流和CO_2腐蚀金属管道表面方程式,得出金属管道表面腐蚀预测的最终模型。结合具体实例,采用数学软件MATLAB对45号金属管道表面腐蚀速率预测的多元线性回归模型进行仿真,并且与实验测量的腐蚀速率进行比较和分析。结果金属管道表面的腐蚀速率随着动态杂散电流或者CO_2浓度的增大而逐渐增大。在100 h内,电流和CO_2浓度仿真的金属管道表面最大腐蚀速率分别为3.72×10~(–4) mm/h和4.80×10~(–4) mm/h,电流和CO_2浓度仿真的金属管道表面最小腐蚀速率分别为3.26×10~(–4)mm/h和4.24×10~(–4) mm/h,电流和CO_2浓度实验测量的金属管道表面最大腐蚀速率分别为3.76×10~(–4) mm/h和4.86×10~(–4) mm/h,电流和CO_2浓度实验测量的金属管道表面最小腐蚀速率分别为3.12×10~(–4) mm/h和4.08×10~(–4)mm/h。同时,金属管道表面腐蚀速率理论计算值与实验测量值的相对误差在5%以内。结论采用多元线性回归模型可以近似预测输气金属管道表面的腐蚀速率,为管道的使用寿命提供参考数据,避免输气金属管道发生重大安全事故。  相似文献   

4.
利用高温高压釜模拟油田高CO_2分压和高矿化度的生产环境进行腐蚀试验,测定在不同温度条件下1Cr、3Cr和13Cr钢的腐蚀速率,利用扫描电镜(SEM)、X射线衍射仪(XRD)等手段分析了腐蚀产物形貌和成分。结果表明:1Cr、3Cr钢的腐蚀速率随温度升高先增大后减小,二者的腐蚀速率均在80℃达到最大值,分别为7.515mm/a和4.339mm/a;13Cr钢的腐蚀速率在温度低于110℃时随温度的升高缓慢增大,在温度高于110℃时腐蚀速率迅速增大;1Cr、3Cr油管钢在试验温度范围内均出现局部腐蚀,13Cr油管钢在整个试验的温度区间表现出优秀的耐蚀性。  相似文献   

5.
谢涛  林海  许杰  窦蓬  陈毅  刘海龙 《表面技术》2017,46(1):211-217
目的不同管材的CO_2腐蚀行为存在差异,为优选经济型抗CO_2腐蚀材质油套管,探究不同腐蚀条件下常规管材的CO_2腐蚀特征。方法以实际油田的地层水样为腐蚀介质,在高温高压的条件下,对不同材质的油套管进行模拟实验。利用X射线衍射仪(XRD)分析腐蚀试样表面腐蚀产物的形貌特征,研究CO_2分压、温度、测试时间对油套管腐蚀速率的影响规律。结果随着CO_2分压的增加,普通碳钢和低Cr钢的腐蚀速率显著变化,当CO_2分压为0.3 MPa时,普通碳钢腐蚀速率为2.2021 mm/a,而13Cr的腐蚀速率很低,仅为0.1052 mm/a,未表现出明显的规律;腐蚀速率随着温度的升高呈先增加后降低的变化规律,N80,1Cr钢的腐蚀速率远高于13Cr钢;在较短的测试周期内,N80,1Cr,3Cr油套管钢的腐蚀速率略有增加,随着测试周期持续增加,油套管钢的腐蚀速率明显下降;从腐蚀形貌来看,普通碳钢试样的腐蚀程度严重,以均匀腐蚀为主,1Cr,3Cr钢表面存在少量的局部浅斑,以局部腐蚀为主;13Cr材质钢的表面平整,有光泽且无点蚀,腐蚀程度轻微。结论普通碳钢的腐蚀速率对CO_2分压的影响比含Cr合金材质钢更敏感,温度和测试周期均对金属表面的腐蚀产物产生影响,随着温度和测试周期的持续增加,金属表面形成Fe CO3保护膜,含Cr钢表面因铬的富集形成钝化膜,抑制油套管的腐蚀速率,研究成果对CO_2腐蚀环境中的油套管选材具有理论指导意义。  相似文献   

6.
采用高温高压釜动态模拟CO_2驱工况环境,使用失重法研究温度和CO_2分压对20钢腐蚀速率的影响,利用离子色谱分析试验前后钙镁离子的含量,并用扫描电镜(SEM)和X-射线衍射仪(XRD)表征腐蚀形貌和产物成分。结果表明:20钢发生了严重CO_2腐蚀,其腐蚀速率随温度升高而增大、随CO_2分压的增大呈现先降低后增大的趋势;CO_2分压促进采出水中钙镁的沉积;腐蚀产物主要是FeCO_3。  相似文献   

7.
研发了生产系统多相流二氧化碳腐蚀仿真模拟装置,通过模拟注入井、采出井和地面集输管道的多相流状态腐蚀环境,实现多种流态、不同CO_2分压与温度条件下的材料腐蚀评价和缓蚀剂性能评价。在此基础上,研究了矿化度、温度、CO_2分压和流速等多种腐蚀因素对CO_2驱生产井中P110套管的腐蚀影响规律,建立了高CO_2分压局部腐蚀预测模型,并绘制CO_2驱采出井管材局部腐蚀预测图板。结果表明:CO_2驱采出井中P110套管的关键防腐蚀部位为高CO_2分压采出井、井筒中下部、动液面附近管柱。现场应用结果表明,该预测图板的预测符合率达到了80%,能快速、准确预测井筒的腐蚀规律与腐蚀情况。  相似文献   

8.
李冬梅  龙武  邹宁 《表面技术》2016,45(7):102-108
目的研究高温条件下抗硫低合金钢P110SS在低H2S、高CO_2环境中的腐蚀行为。方法模拟我国西部酸性油田工况环境,利用高温高压设备,通过失重法测试腐蚀速率,并用SEM、EDS和XRD分析腐蚀产物。结果在8 MPa的纯CO_2环境中,腐蚀速率随温度升高而降低,210℃时为0.35 mm/a,腐蚀产物为碳酸盐。当加入6 k Pa硫化氢时,腐蚀速率依然随温度升高而降低,150℃时为0.74 mm/a,腐蚀产物呈现双层结构,内层为结晶良好的FeCO_3,外层为FeS。当硫化氢分压升至165 k Pa时,腐蚀加剧,且腐蚀速率随温度升高而增大,210℃时达2.78 mm/a,腐蚀产物主要为铁的硫化物,同时随腐蚀时间延长至2160 h,腐蚀速率有所降低。结论在纯CO2环境中,高温时生成的内层碳酸盐腐蚀产物膜相对完整,对基体的保护能力较强。当加入6 k Pa硫化氢时,腐蚀由CO_2主导,呈现与纯CO_2环境中相同的腐蚀速率规律,内层的FeCO_3细密均匀。当硫化氢分压升至165 k Pa时,腐蚀由H_2S和CO_2混合控制,疏松破损的铁的硫化物无法对基体形成良好的保护,因此腐蚀速率显著升高。  相似文献   

9.
目的:研究 CO2分压对 CO2/H2S腐蚀的影响规律,为海底管道材料的选择提供参考依据。方法采用高温高压反应釜进行腐蚀模拟实验,对腐蚀前后的试样进行称量,计算腐蚀速率。通过SEM观察腐蚀产物膜形貌,通过 XRD 分析腐蚀产物膜成分。结果当 CO2/H2S 分压比较高(1200)时, CO2分压为0.3、0.5、1.0 MPa对应的腐蚀速率分别为1.87、3.22、5.35 mm/a,随着CO2分压升高,腐蚀速率几乎呈线性增大趋势。当CO2/H2S分压比较低(200)时,CO2分压为0.3、0.5、1.0 MPa对应的腐蚀速率分别为3.47、3.64、3.71 mm/a,CO2分压变化对腐蚀速率的影响并不显著。当CO2/H2S分压比较高(1200)时,腐蚀产物以FeCO3为主,腐蚀受CO2控制;此时低CO2分压下的腐蚀产物膜较完整致密,高CO2分压下的腐蚀产物膜局部容易破裂,对基体保护性下降,因此腐蚀速率随CO2分压升高而增大。当CO2/H2S分压比较低(200)时,腐蚀产物以FeS为主,腐蚀受H2S控制;此时在不同CO2分压条件下,腐蚀产物均较完整致密,因此腐蚀速率相对较低,并未随着CO2分压升高显著增大。结论 CO2分压对CO2/H2S腐蚀速率的影响与CO2/H2S分压比密切相关,海底管道材料选择不仅要考虑CO2分压的影响,还要考虑CO2/H2S分压比的影响。  相似文献   

10.
目的预测均匀腐蚀下金属管道的剩余寿命。方法研究API579中对金属管道剩余寿命预测的方法,具体分析方法中存在的缺陷。采用场指纹法(FSM)对直径为750 mm、壁厚为10 mm的金属管道的腐蚀情况进行实时检测。检测时随机选择15个不同的位置,每隔3个月检测一次,通过检测各个位置电极对之间电压值的变化量计算出管壁厚度的变化值。结果根据对实验数据的分析,随着时间推移,金属管道壁厚值逐渐减小,且减小的速率越来越快。腐蚀速率与运输介质、含氧量、金属管道材料、运输介质中的杂质有着密切关系,全面分析实验数据可以得到金属管道腐蚀速率的规律。加入腐蚀速率影响因素的影响因子K,运用数理统计的方法探索性地提出了一种均匀腐蚀下金属管道剩余寿命Rlife预测的数学模型。结论在工程实际中,可以运用数理统计的方法对大量实时数据及运行过程中已经记录的数据进行分析,从而找到金属管道在特定环境下的腐蚀规律,再通过该数学模型可对均匀腐蚀的金属管道进行寿命预测。  相似文献   

11.
H2 S 对油气管材的腐蚀及防护研究综述   总被引:13,自引:13,他引:0  
随着石油天然气工业的迅速发展,酸性气体引起的油气管材腐蚀问题日益突出,尤其是H2S引起的腐蚀广泛存在,严重影响着油气开采及输送管道和炼制加工设备的使用寿命。综述了H2S对油气管材腐蚀的机理、影响因素及防护方法,探讨了温度、H2S分压、p H值、流速、Cl-浓度、CO2分压及管材材质等因素对H2S腐蚀的影响,建立了H2S腐蚀速率预测模型并对其进行了相关分析,对H2S腐蚀防护方法进行了评述。最后,简述了H2S腐蚀的研究现状及发展趋势。  相似文献   

12.
L80油管钢在CO2/H2S环境中的腐蚀行为   总被引:2,自引:2,他引:0  
目的:研究L80油管在CO2/H2S环境中的腐蚀行为。方法利用扫描电镜(SEM)、EDAX能谱分析L80油管内壁腐蚀产物形貌特征和化学组成,采用高温高压反应釜,以实际油水分离的水样为腐蚀介质进行模拟实验,研究原油含水率、CO2/H2S 分压和温度对 L80油管腐蚀速率的影响规律。结果在CO2/H2S环境中,L80油管内壁呈现明显的局部腐蚀特征,部分表面点蚀坑深度超过100μm,形成FeS、FeCO3等腐蚀产物。随着含水率的增加,L80油管腐蚀速率逐渐增大,含水率为30%时的腐蚀速率为0.0377 mm/a,含水率为100%时的腐蚀速率为0.0952 mm/a。CO2分压不变时,随着 H2S分压的增加,L80钢的腐蚀速率增大,H2S分压为0.04 MPa时的腐蚀速率为0.0377 mm/a,H2S分压为0.3 MPa时的腐蚀速率为0.0952 mm/a;H2S分压不变时,随着CO2分压的增大,L80钢腐蚀速率变化不明显且腐蚀速率较小。随着温度的升高,腐蚀速率先以较大幅度增大,再以较小幅度减小,从40℃增加至100℃时,腐蚀速率由0.0083 mm/a升至0.1264 mm/a,100℃左右时的腐蚀速率最大,120℃对应的腐蚀速率为0.106 mm/a。结论 L80油管在CO2/H2S环境中以均匀腐蚀和局部点蚀为主。L80油管腐蚀速率对H2S分压比CO2分压更敏感,CO2分压增大促使具有良好保护性的FeCO3保护膜的形成,降低了腐蚀速率。温度升高至一定范围,导致碳酸盐等难溶性盐溶解度降低,并覆盖在钢表面形成保护层,从而使腐蚀速率下降。  相似文献   

13.
目的提高多相流动状态下温度对X70钢CO2腐蚀机理的认识。方法采用自制实验装置和挂片实验,模拟起伏管路段塞流动条件下X70钢的CO2腐蚀状态,通过电子显微镜和电化学在线监测等手段对试样表面形貌、腐蚀速率以及在线腐蚀情况进行观察和分析,侧重研究多相流动状态下温度对X70钢CO2腐蚀速率的影响。结果当温度达到90~98℃时,由于腐蚀产物膜的影响,CO2分压对腐蚀速度影响甚微,腐蚀速度降至较低水平。当温度在60~80℃之间时,腐蚀挂片表面的腐蚀状态不稳定,出现局部腐蚀或均匀腐蚀,当CO2分压较低时(如0.15 MPa),易形成均匀腐蚀;当CO2分压较高时(如0.6 MPa),易形成局部腐蚀。当温度在40~80℃之间时,随着CO2分压的增加,腐蚀速率达到最高值的温度越来越高,腐蚀速率达到最高值的温度范围一般保持在40~80℃之间。结论温度对X70钢CO2腐蚀的影响与CO2分压密切相关,相同温度下,随着CO2分压的增加,腐蚀速率增大,相应的腐蚀速率达到最高值的温度也越来越高;孤立地说某一温度值下,CO2腐蚀速率达到最高值这一说法不准确。  相似文献   

14.
王文辉  骆正山  张新生 《表面技术》2019,48(10):267-275
目的 构建埋地管道腐蚀深度预测模型,预测腐蚀管道的剩余使用寿命。方法 依据ASME B31G剩余强度评价标准,给出管道的最大允许腐蚀深度计算方法,引入广义回归神经网络(GRNN),构建埋地管道腐蚀深度预测模型,采用粒子群算法(PSO)优化GRNN的网络参数,结合管道腐蚀发展趋势预测方法,对埋地薄弱管道进行腐蚀剩余寿命预测。以陕西省某埋地输油管道为例,选取8个主要外腐蚀因素,构建外腐蚀指标体系,借助Pycharm编程仿真,结合埋片试验,对该模型预测结果进行验证分析,并预测各腐蚀管段剩余使用寿命。结果 与BP模型相比,PSO-GRNN模型的管道腐蚀深度预测结果最大相对误差控制在13.77%以内,平均相对误差仅为6.63%。寿命预测结果显示,部分管段的剩余使用寿命未能达到其预期服役寿命。结论 所建模型预测性能要明显优于BP模型,预测精度更高,能够较好地预测埋地管道的最大腐蚀深度和未来的腐蚀发展规律,剩余寿命预测结果贴近实际,为管道的维修和更换提供了指导依据,在实际工程中,具有一定的应用价值。  相似文献   

15.
陈毅  许杰  贾立新  王孔阳  林海  闫伟 《表面技术》2018,47(2):195-201
目的探究不同材质套管在高温腐蚀环境下的适用性。方法采用高温高压釜,以渤海某稠油油田岩心、地层水样为腐蚀介质,对不同材质的套管进行模拟评价。结果利用气相色谱技术分析确定了该油田的腐蚀环境:CO2分压最高值为0.2 MPa,H2S分压最高值为0.0023 MPa。用最高的腐蚀气体分压进行了腐蚀模拟实验,测定出不同钢材在此腐蚀环境下的腐蚀速率,并建立了长期腐蚀速率预测模型,得到100H、80-1Cr、110-3Cr的长期腐蚀速率分别为0.24、0.20、0.05 mm/a。综合腐蚀实验结果和稠油热采套管强度衰减规律,对热采套管进行了强度设计,80-1Cr、100H、110-3Cr的安全寿命分别为3.8、6.5、11.2 a。结论高温会引起套管强度衰减,且腐蚀会导致套管径厚比变化,而多轮次注蒸汽会加速腐蚀进程,降低套管的使用寿命。研究结果对腐蚀环境中稠油热采套管的选材具有重大指导意义。  相似文献   

16.
基于改进BP神经网络优化的管道腐蚀速率预测模型研究   总被引:2,自引:1,他引:1  
许宏良  殷苏民 《表面技术》2018,47(2):177-181
目的构造金属管道腐蚀速率预测模型,预测管道的使用寿命。方法分析了二氧化碳(CO2)和硫化氢(H2S)对金属管道的腐蚀过程,给出了管道腐蚀的化学反应方程式。引用了BP神经网络构造金属管道腐蚀速率的数学模型,采用了改进粒子群算法对预测模型进行优化。以45号金属管道为例,借助于Matlab软件对管道腐蚀速率进行仿真验证,并与实验测量数据进行对比和分析。结果金属管道腐蚀速率随着CO2或H2S压强的增大而逐渐增大,仿真结果显示CO2和H2S的最大腐蚀速率分别为7.20×10-5 mm/h和5.76×10-5mm/h,而实验测量结果显示CO2和H2S的最大腐蚀速率分别为7.14×10-5 mm/h和5.65×10-5 mm/h,采用改进BP神经网络预测模型所产生的相对误差在5%以内。结论金属管道在不同压强条件下,采用改进BP神经网络预测模型能够近似地预测其腐蚀速率,为金属管道的更换提供了参考依据。  相似文献   

17.
模拟油田CO2驱油现场环境,利用高温高压反应釜,采用失重法、扫描电镜(SEM)、X射线衍射(XRD)等方法,研究了不同CO2分压对X80管线钢腐蚀性能的影响。结果表明,X80管线钢的腐蚀速率随着CO2分压的升高呈先升高后下降的趋势,在CO2分压为1.5MPa时达到最大值。当CO2分压为0 MPa和0.5 MPa时发生均匀腐蚀,当分压升高到1.5MPa和2MPa时发生了局部腐蚀。CO2分压为0MPa时的腐蚀产物为非晶态物质,其余各分压下的腐蚀产物均以FeCO3为主。随着CO2分压的升高,腐蚀产物与基体结合的紧密度随着CO2分压的升高越来越紧密;腐蚀产物膜厚度呈先升高后降低的趋势,与腐蚀速率的变化相对应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号