首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
根据季铵化反应原理,以喹啉和1,3-二氯-2-丙醇合成了一种含羟基双季铵盐酸化缓蚀剂(BQ-1)。用红外光谱对其结构进行了表征,采用静态失重法和电化学测试研究了该缓蚀剂在15%HCl溶液中对N80钢的缓蚀性能。结果表明,该缓蚀剂具有明显的腐蚀抑制能力,在15%HCl、90℃下,5mmol/L该缓蚀剂对N80钢片的缓蚀率达96%以上,缓蚀性能优良;此外,该缓蚀剂是一种混合型缓蚀剂,在N80钢片表面的吸附作用符合Langmuir等温吸附规律。表面分析试验(SEM和EDS)验证了缓蚀剂分子在N80钢片表面确实形成了一层保护膜。  相似文献   

2.
HJ曼尼希碱缓蚀剂的合成及其性能   总被引:1,自引:0,他引:1  
采用糠醛、苯乙酮和水合肼合成了HJ曼尼希碱缓蚀剂。通过静态失重法和电化学方法评价了该缓蚀剂对N80钢的缓蚀性能。静态失重法表明,N80钢片在加有1.0%(质量分数)HJ曼尼希碱的15%(体积分数,下同)盐酸溶液中的腐蚀速率为0.623 5g·m~(-2)·h~(-1),远低于SY/T5405-1996标准中的一级标准。电化学测试结果表明,该缓蚀剂是以抑制阳极腐蚀过程为主的混合型缓蚀剂。该缓蚀剂在N80钢表面上的吸附行为服从Langmiur吸附等温式。  相似文献   

3.
以乙二胺、多聚甲醛和苯乙酮为原料经曼尼希反应合成了乙二胺双曼尼希碱盐酸盐,并合成了2-苯甲酰基-3-羟基-1-丙烯(BAA)和3-羟基苯丙酮,使用核磁共振氢谱分别对其结构进行了表征。三者复配得到增强型酸化缓蚀剂,采用静态失重法,电化学方法和SEM观察等研究了复配缓蚀剂在15%HCl溶液中对N80钢的缓蚀性能。结果表明:在90℃、15%HCl溶液中加入0.1%复配缓蚀剂,N80钢片的腐蚀速率为2.316 2g·m~(-2)·h~(-1),即达到一级标准(SY/T 5405-1996)。此外,该缓蚀剂是一种混合型缓蚀剂,在N80钢片表面的吸附作用符合Langmuir等温吸附规律。表面分析试验(SEM和EDS)验证了缓蚀剂分子在N80钢片表面形成了一层保护膜。  相似文献   

4.
以乙二胺和芳香醛为原料合成了乙二胺双缩肉桂醛(NDCE)、乙二胺双缩苯甲醛(NDBE)、乙二胺双缩水杨醛(NDSE)和乙二胺双缩对二甲胺基苯甲醛(NDDE)四种双缩Schiff碱缓蚀剂,用元素分析和红外分析对其结构进行了表征,并采用静态失重法和电化学法研究了90℃时它们在15%(质量分数,下同)HCl中对N80钢的缓蚀性能。结果表明:NDCE的缓蚀效果最好,当NDCE的加量为0.75%时,缓蚀率达到99.17%,且NDCE在N80钢片表面的吸附行为符合Langmuir吸附等温模型;NDCE是一种混合型酸化缓蚀剂,在N80钢表面形成了一层保护膜,有效抑制了酸液对N80钢的腐蚀。  相似文献   

5.
目的针对曼尼希碱类缓蚀剂使用工况恶劣、影响因素复杂的情况,以单曼尼希碱为中间体,合成双曼尼希碱缓蚀剂(DM)。方法采用失重法、电化学方法研究Fe~(3+)对DM缓蚀性能的影响,计算DM在N80钢片表面的吸附热力学与动力学,并探讨Fe~(3+)对DM吸附行为的影响。结果在60℃、腐蚀介质总体积250 mL、缓蚀剂(DM)质量分数1%、盐酸质量分数20%、浸泡时间4 h的条件下,当Fe~(3+)质量浓度小于900 mg/L时,其腐蚀速率小于4 g/(m~2·h),满足SY/T 5405—1996对盐酸酸化缓蚀剂一级品的评价指标;当Fe~(3+)质量浓度大于900 mg/L时,其腐蚀速率仍然小于5 g/(m~2·h),满足盐酸酸化缓蚀剂二级品的评价指标。在1%DM的缓蚀溶液中,ΔG_(ads)=-44.86 k J/mol,当溶液中存在Fe~(3+)时,ΔG_(ads)=-42.56 k J/mol,与未加Fe~(3+)的相比,ΔG_(ads)更趋向于-40 kJ/mol。N80钢在20%盐酸溶液中的Ea值为7.10 kJ/mol,加入1%DM和1%DM+600 mg/L Fe~(3+)时的Ea值分别为25.45、23.90 kJ/mol。加入1%DM时,ΔE_(corr)=50 mV;加入1%DM+600mg/L Fe~(3+)时,ΔE_(corr)=30 mV。结论 N80钢在60℃、20%HCl条件下,DM缓蚀效率高达99.8%,是一种混合型缓蚀剂。在N80钢表面的吸附为混合型吸附,且吸附过程是一个自发、放热的过程,吸附规律服从Langrauir吸附等温式。加入Fe~(3+)后,对DM缓蚀性能起抑制作用,Fe~(3+)并没有改变DM的缓蚀剂类型,且Fe~(3+)通过破坏DM在N80钢表面的化学吸附来降低其缓蚀效率。  相似文献   

6.
以甲醛、苄叉丙酮、对甲基苯胺为原料,通过曼尼希反应,制备了一种新型的曼尼希碱缓蚀剂(MHX),并采用正交试验优化了制备条件。采用静态失重法、电化学测试及分子动力学模拟的方法,研究了MHX添加量对N80钢片在HCl溶液中缓蚀效果的影响。结果表明:在90℃、添加1%MHX的20%HCl溶液中,N80钢片的腐蚀速率为2.6 g·m-2·h-1,缓蚀率为99.63%;该缓蚀剂是一种以抑制阳极为主的混合型缓蚀剂,可以大幅降低腐蚀电流密度,提高电极阻抗;MHX能够在N80钢表面吸附成膜,降低钢表面Fe的损耗,使其表面粗糙度降至93.81 nm; MHX分子在N80钢表面的吸附能为-7.59 eV,能有效取代H2O分子吸附在金属表面,从而起到缓蚀作用。  相似文献   

7.
新型希夫碱酸化缓蚀剂的合成及性能评价   总被引:2,自引:0,他引:2  
以苯胺和芳香醛为原料,通过Schiff反应合成了一种新型希夫碱酸化缓蚀剂ACR-1。采用静态失重法研究了盐酸浓度、腐蚀温度和缓蚀剂浓度对该缓蚀剂缓蚀效果的影响,并对该缓蚀剂在钢片表面的吸附模型进行了探讨;通过电化学法研究了该缓蚀剂的电化学机理。静态挂片失重法表明,腐蚀温度为90℃,腐蚀时间为4h,在ACR-1浓度为1.0%的15%盐酸溶液中,N80钢片的腐蚀速率为1.6733g.m-2.h-1,完全可以满足石油行业标准SY/T 5405-1996一级缓蚀剂产品的指标(3~4g.m-2.h-1);等温吸附行为研究结果表明,该缓蚀剂分子能自发的吸附在N80钢表面上,其在N80钢表面的吸附符合Langmuir单分子吸附模型;电化学法研究表明,ACR-1是一种以抑制阳极反应过程为主的混合型缓蚀剂,属于"几何覆盖效应"模型,并且可以在N80试片表面形成明显的保护性膜层,有效地抑制了试片在酸液中的腐蚀。  相似文献   

8.
张朔  李洪俊  徐庆祥  马田力  李楠 《表面技术》2017,46(10):229-233
目的改善缓蚀剂在高温酸液中的缓蚀性能,满足油田高温井酸化施工的要求。方法在合成一种新型吡啶季铵盐的基础上,添加炔醇、碘化钾等助剂进行复配,得到一种新型高温酸化缓蚀剂HTCI-1。使用HK-1高温高压动态腐蚀仪对其缓蚀性能进行测试,通过电化学测试、SEM、EDS等实验对其缓蚀机理进行分析。结果该酸化缓蚀剂在160℃、16 MPa、20%HCl或者土酸(12%HCl+3%HF)、质量分数3.0%的条件下,使N80试片的腐蚀速率分别为24.53 g/(m~2·h)和23.72 g/(m~2·h),达到了SY/T 5405—1996中的一级指标。结论在高温酸液中,N80钢片腐蚀速率降低,主要是由于缓蚀剂分子吸附到碳钢表面形成了一层致密的疏水性吸附膜,从而降低了侵蚀性离子与钢铁表面接触的几率,腐蚀电极反应过程受到抑制,达到了高温条件下防护金属的目的。  相似文献   

9.
以喹啉和双卤代烃为原料经季铵化反应合成了三种喹啉型双季铵盐酸化缓蚀剂:溴化1,4-二喹啉丁烷(Q-4-Q)、溴化1,6-二喹啉己烷(Q-6-Q)和溴化1,8-二喹啉辛烷(Q-8-Q),采用核磁共振氢谱对其结构进行表征。采用失重法,电化学方法和SEM等方法研究了三种产物在15%HCl溶液中对N80钢的缓蚀性能。结果表明,Q-8-Q的缓蚀性能最佳;双季铵盐Q-8-Q与肉桂醛(CA)最佳复配比为cQ-8-Q∶cCA=1∶1。在15%HCl,90℃条件下,6mmol/L该复配缓蚀剂对N80钢片的缓蚀率达99.79%,缓蚀性能优良;缓蚀剂分子在N80钢片表面形成一层保护膜;该复配缓蚀剂能有效抑制酸液对N80钢表面的腐蚀,是一种以抑制阴极反应为主、属"负催化效应"作用机理的混合型缓蚀剂。  相似文献   

10.
采用静态失重法、电化学方法和扫描电镜等方法,研究了一种双子表面活性剂(DBA2-12)对N80钢在盐酸介质中的吸附缓蚀性能。结果表明,DBA2-12对N80钢在1 mol/L的盐酸溶液中具有较好的缓蚀性能。随着缓蚀剂浓度的增加,缓蚀率增大;随着实验温度升高,缓蚀率减小。该缓蚀剂在N80钢表面的吸附遵循Langmuir吸附等温式,是一种混合抑制型缓蚀剂。  相似文献   

11.
曼尼希碱缓蚀剂在盐酸中对N80钢缓蚀性能   总被引:1,自引:1,他引:0  
目的制备一种新型曼尼希碱缓蚀剂并研究其性能。方法利用失重法研究缓蚀剂缓蚀效率与缓蚀剂的质量浓度、盐酸质量分数、腐蚀温度、腐蚀时间的关系,确定缓蚀剂的吸附曲线。通过动电位极化曲线法和交流阻抗法研究缓蚀剂的综合性质。利用扫描电镜观察腐蚀前后N80钢片的表面形态。结果缓蚀剂缓蚀效率随缓蚀剂添加量的增大而增大,随测试温度的升高而下降,随盐酸质量分数的升高先增大后减小,随腐蚀时间的延长先增大后减小。60℃时,在质量分数为15%盐酸中浸入4 h、缓蚀剂添加量在1.0 g/L的条件下,缓蚀剂缓蚀效率为99.18%,腐蚀反应的活化能由56.34 k J/mol提高到了86.54 k J/mol。缓蚀剂在N80钢表面符合Langmiur吸附模型,吸附吉布斯自由能为-29.94 k J/mol。极化实验结果显示该缓蚀剂为以阴极抑制为主的混合型缓蚀剂。阻抗谱图显示添加缓蚀剂后,阻抗明显增大。扫描电镜结果显示缓蚀剂有效抑制了盐酸对N80钢片的腐蚀。结论所制备的缓蚀剂在质量分数为15%的盐酸中对N80钢片有良好的缓蚀效果。  相似文献   

12.
合成了一种席夫碱:4-氯-N-[(吡啶-4基)-亚甲基]苯胺(CNP),并采用失重法、电化学阻抗谱和动电位极化曲线等,研究了CNP对N80钢在1mol/L HCl溶液中的缓蚀性能。结果表明,在1mol/L HCl溶液中,当缓蚀剂摩尔浓度为1.0mmol/L时,缓蚀率达到86.17%。其在N80钢表面吸附满足Langmuir吸附等温式,是一种混合型缓蚀剂。  相似文献   

13.
采用甲醛/苯甲醛、苯乙酮和水合肼为原料分别合成了AJ和BJ两种曼尼希碱缓蚀剂。通过静态挂片失重法、电化学测试法等方法研究了在15%HCl(质量分数)溶液中,这两种缓蚀剂对N80钢的缓蚀性能。结果表明:在15%的HCl溶液中,AJ和BJ缓蚀剂对N80钢具有良好的缓蚀作用,且BJ缓蚀剂的缓蚀效果要优于AJ缓蚀剂的;两种缓蚀剂均为阳极型缓蚀剂,都能自发吸附在N80钢表面,其行为均符合Langmuir吸附等温式。  相似文献   

14.
制备了一种新型希夫碱缓蚀剂1-苯基-3-(1-环己胺)-1-丙烯(PCP),通过失重法、动电位极化扫描、电化学阻抗和扫描电镜等方法,研究了其在不同温度下对油套管钢N80钢的缓蚀性能。结果表明,该酸化缓蚀剂对N80钢在盐酸溶液中具有很好的缓蚀性能,属于混合型缓蚀剂,温度对其缓蚀效率的影响较小。  相似文献   

15.
合成了一种新型的曼尼希碱季铵盐(BMQA)酸化缓蚀剂,通过静态失重法测试了缓蚀剂在不同浓度盐酸中的缓蚀性能。结果表明,90℃下,缓蚀剂BMQA在15%盐酸中加入0.1%,18%盐酸中加入0.2%,28%盐酸中加入0.5%,N80钢的腐蚀速率都能小于4g·m-2·h-1。极化曲线测试表明该缓蚀剂是抑制阳极为主的混合型缓蚀剂,遵循Langmuir吸附等温式,能自发在金属表面进行化学吸附。  相似文献   

16.
合成了一种新型缓蚀剂O,O'-二(2-苯乙基)二硫代磷酸二乙铵(EPP),并用元素分析和红外光谱对其进行了表征。采用静态失重法、极化曲线法和电化学阻抗法研究了EPP在HCl溶液中对Q235钢的缓蚀性能,探讨了其在Q235钢表面的吸附行为,考察了HCl浓度、腐蚀体系温度等因素对其缓蚀率的影响。结果表明:EPP是一种高效的混合型缓蚀剂,其缓蚀率随缓蚀剂浓度增加而增大,随腐蚀系统温度升高而缓慢减小。在30℃,1.0 mol·L-1的HCl溶液中,EPP浓度为60 mg·L-1时,其缓蚀率高达98.48%。EPP在Q235钢表面的吸附符合Langmuir吸附等温式,属于自发进行的化学吸附。量子化学计算结果表明,EPP通过配位键和反馈键与金属Fe形成了多中心、稳定的化学吸附。  相似文献   

17.
目的考察一种新型的咪唑啉类缓蚀剂CPA-1对N80钢在CO_2环境下的缓蚀性能。方法通过失重法、电化学阻抗谱和极化曲线,研究了在不同温度下缓蚀率和缓蚀剂浓度之间的关系,利用扫描电子显微镜和扫描电化学显微镜对表面形貌进行了观察分析,根据等温吸附模型研究了咪唑啉缓蚀剂在N80钢表面的吸附类型。结果失重结果表明,缓蚀剂的缓蚀效率随浓度的增大而升高,当温度为40℃、缓蚀剂质量浓度为250 mg/L时,缓蚀率达到95%;温度升高至80℃时,缓蚀率下降至87%。电化学试验表明,咪唑啉类缓蚀剂对阴极和阳极反应均有抑制作用。表面形貌分析表明,缓蚀剂能有效改善金属表面的腐蚀程度。结论咪唑啉类缓蚀剂CPA-1属于混合型缓蚀剂,对N80钢具有较好的缓蚀性能。缓蚀机理为通过吸附方式在金属表面形成一层吸附膜抑制金属腐蚀,吸附方式遵循Langmuir吸附等温模型,物理吸附和化学吸附均会在金属表面发生。  相似文献   

18.
目的 提取制备一种环境友好型缓蚀剂,并研究缓蚀剂对冷轧钢在1.0 mol/L盐酸溶液中的缓蚀性能。方法 利用超声波提取法从荞麦中提取得到荞麦提取物。采用失重法和电化学法研究荞麦(Fagopyrum esculentum Moench.)提取物(FEME) 对冷轧钢在HCl介质中的缓蚀性能,测试缓蚀溶液的紫外光谱(UV)、电导率及表面张力,并通过扫描电子显微镜(SEM)、原子力显微镜(AFM)、X–射线光电子能谱(XPS)、红外光谱(FTIR)表征钢表面的微观形貌、化学组成,用接触角测量仪测定钢表面的亲水/疏水性,分析FEME中的主要成分,进而深入探究了其缓蚀有效成分及作用机理。结果 FEME在1.0 mol/L HCl中具有良好的缓蚀性能,100 mg/L FEME的缓蚀率达90.1%(30 ℃);FEME在钢表面的吸附服从Langmuir吸附等温式,标准吸附Gibbs自由能(?GΘ)为–32~–27 kJ/mol,电化学缓蚀机理为“几何覆盖效应”。添加FEME后,有效降低了钢/酸界面的双电层电容值,提升了电荷转移电阻。缓蚀钢表面的SEM和AFM微观形貌表明,其腐蚀程度明显下降,接触角变大,疏水性增强,FTIR和XPS证实了FEME能有效吸附在钢表面形成缓蚀膜层,且缓蚀膜层主要是通过FEME在钢表面的物理吸附和化学吸附而形成,FEME成分中含有大量的—OH,—OH的存在会使这些成分质子化,从而与带负电荷的钢表面通过静电引力而发生吸附,而且分子中含有大量的O、N等杂原子和不饱和基团结构,有大量的孤对电子可以与Fe的空d轨道配位,从而产生缓蚀剂在钢表面的化学吸附。与浸泡前相比,在钢腐蚀浸泡后,缓蚀溶液的表面张力增加,是由于浸泡后部分缓蚀剂分子在钢表面发生了吸附,致使溶液体相中的缓蚀剂分子浓度下降而引起。钢在腐蚀浸泡后,因H+的消耗,电导率明显降低,但浸泡钢表面后的缓蚀溶液随着FEME浓度的增加,电导率增加,说明缓蚀剂在钢表面吸附后,与钢表面发生腐蚀反应的H+消耗减少。20 ℃时,质量浓度为100 mg/L的芦丁的缓蚀率为57.8%,FEME的缓蚀性能优于其主成分芦丁,其机理为黄酮类化合物与其他成分的协同缓蚀作用。结论 FEME是一种高效、环保的混合抑制型缓蚀剂。  相似文献   

19.
目的 合成制备适用于CO2驱油环境中井筒材料的腐蚀防护的咪唑啉缓蚀剂,探究碳链长度对咪唑啉缓蚀剂腐蚀防护性能的影响机制。方法 以辛酸、月桂酸、硬脂酸和二乙烯三胺等为原料,经酰胺化和环化后制备得到3种碳链长度(C7、C11和C17)的咪唑啉缓蚀剂。通过傅里叶变换红外光谱、量子化学计算、失重法、电化学方法以及表面观察技术,对合成缓蚀剂在CO2驱油环境中对井筒材料的腐蚀防护性能进行了评价。结果 红外测试观察到3种链长(C7、C11和C17)的咪唑啉缓蚀剂的特征吸收峰,表明3种链长咪唑啉缓蚀剂成功制备。量子化学计算表明,合成的C17咪唑啉缓蚀剂具有最优的供电子能力和最佳的疏水能力。腐蚀失重和电化学测试结果显示,所合成的3种不同碳链长度的咪唑啉缓蚀剂均对CO2驱腐蚀环境中N80钢具有良好的腐蚀防护作用,随着缓蚀剂浓度的提升,其缓蚀效率逐渐增高。其中含有17个碳链的咪唑啉缓蚀剂(C17)在10 mg/L时缓蚀效率达到了90%以上。拉曼光谱观察到N80钢表面C=N和C—N的吸收峰,表明合成的3种缓蚀剂在N80表面上吸附。SEM结果发现,添加C17咪唑啉的N80表面腐蚀最为轻微,其腐蚀防护效果最优。结论 合成的C17碳链的咪唑啉缓蚀剂具有优异的腐蚀防护效果,随着碳链长度的增加,碳链的推电子能力增强,使得咪唑啉缓蚀剂更容易在N80钢表面吸附,同时长碳链形成的缓蚀剂膜层也具有更好的疏水作用,导致咪唑啉中缓蚀剂越长其缓蚀效果越好。  相似文献   

20.
曼尼希碱与硫脲在气井采出水腐蚀体系中的缓蚀协同作用   总被引:5,自引:5,他引:0  
孟凡宁  李谦定  李善建 《表面技术》2014,43(3):90-94,110
目的寻找新型缓蚀剂,以解决碳钢在气井采出水中的腐蚀问题。方法以N80钢在80℃气井采出水中的腐蚀为研究对象,通过极化曲线和电化学阻抗谱,研究曼尼希碱与硫脲进行复配的缓蚀效果,并探讨缓蚀协同作用机理。结果硫脲是一种混合型缓蚀剂,对N80钢的阴极过程和阳极过程都有强烈的抑制作用;曼尼希碱是一种以抑制阴极为主的混合型缓蚀剂。二者复配后,对N80钢在气井采出水中的腐蚀表现出优异的缓蚀协同效应,当曼尼希碱添加量为0.75%,硫脲的质量浓度为2.5 mg/L时,缓蚀效果最好。结论曼尼希碱与硫脲二者复配使用时,在N80钢表面可能形成一种双层结构的吸附膜,内层以硫脲为主,外层以曼妮希碱为主。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号