首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
采用双辊快速凝固技术制备了Sn-58Bi钎料薄带,并制备Cu/Sn-58Bi/Cu线性焊点。使用电子探针(EPMA)及能谱分析(EDS)研究焊点在电流密度为1×10^4 A/cm^2(25℃)下界面金属间化合物(IMC)、元素扩散与钎料基体组织演变规律。结果表明,随着通电时间延长阳极界面处的IMC层的形状从扇贝状转变为锯齿状,阴极界面处的IMC层由扇贝形变为不规则,其厚度逐渐增加。阳极由于Bi的偏聚形成了富Bi层,Sn在阴极偏聚,基体共晶组织(Bi+β-Sn)粗化。基于线性拟合可知,阳极和阴极的界面IMC层的生长系数n分别为0.263和0.442,其生长机制可归结为体积扩散。  相似文献   

2.
研究Cu/SnBi/Cu焊点在电流密度分别为8×103,1×104和1.2×104 A/cm2的作用下通电80 h后钎料基体内部金属间化合物 (IMC)的形貌演变。结果表明:电流密度为8×103 A/cm2时,在焊点的阳极界面出现了大量的形状不规则的IMC,而在阴极界面并未有明显的IMC形成;当电流密度为1×104 A/cm2时,阴极界面的IMC层呈扇贝状,有些IMC已经在界面处脱落,而阳极界面的IMC呈层状,而且厚度要比阴极的薄;当电流密度为1.2×104 A/cm2时,阳极界面的IMC厚度有所增加,但是阴极界面的IMC已经向钎料基体中进行了扩散迁移,使得界面变得凹凸不平。值得注意的是, 随着电流密度的增加,在阳极形成的Bi层的厚度明显增加  相似文献   

3.
选用直流稳压电源对Cu/Sn-58Bi-x CNTs/Cu(x=0,0.01)焊点的抗电迁移性能进行了测量,研究了不同通电时间下焊点的组织、界面IMC形貌及蠕变性能。结果表明:随着通电时间的增加,钎料焊点的显微组织均呈粗化的趋势,焊点界面IMC形貌均由扇贝状趋于平坦,厚度呈上升的趋势,钎料焊点的蠕变断裂寿命均降低。与同一通电时间的焊点阳极对比,焊点阴极附近的组织更为细小,界面IMC更薄;相较于同一通电时间的Sn-58Bi钎料焊点,Sn-58Bi-0.01CNTs复合钎料的焊点显微组织更为细小,界面IMC更薄,焊点的蠕变性能更优。  相似文献   

4.
采用球栅阵列封装(BGA)焊点研究共晶SnPb焊点中的电迁移行为,分析了电迁移作用下SnPb焊点与Ni(P)镀层界面金属间化合物(IMC)的极性生长现象,从原子迁移的角度提出了互连焊点微结构演化的微观机理.焊点在焊接过程中形成厚度约为2 μm的Ni3Sn4 IMC层,随后的120℃热处理并不会导致界面IMC的明显生长.而电迁移作用下,阳极焊点与镀层界面IMC出现异常生长,同时阴极焊点与镀层界面IMC生长受到抑制,最终在同一焊点中形成极性生长的现象.界面IMC的极性生长与电迁移引起的原子通量有关,Sn原子通量方向与电子流方向相同,而Ni原子通量方向相反,导致阳极界面IMC的异常生长,而相同的原子迁移特性导致阴极界面IMC的生长受到抑制.  相似文献   

5.
主要研究电流密度为5×103 A/cm2,室温和高温(100 ℃)条件下共晶SnBi焊点的电迁移特性.结果表明:室温条件通电465 h后,阳极界面处出现Bi的挤出,阴极界面处出现裂纹;而在高温条件下通电115 h后,组织形貌发生了很大的变化.高温加速了阴极钎料的损耗,导致电流密度在局部区域高度集中,从而产生更多的焦耳热,最终引发焊点的熔化.熔融状态下Sn原子与Cu反应,在基体形成大量块状的Cu6Sn5金属间化合物,严重降低焊点的可靠性.  相似文献   

6.
何洪文  徐广臣  郭福 《焊接学报》2010,31(10):35-38,42
研究了Cu/Sn-58Bi/Cu对接接头焊点在电流密度为5×103~1.2×104A/cm2条件下钎料基体中阳极界面Bi层的形成机理.电迁移过程中,Bi元素为主要的扩散迁移元素,在电迁移力的作用下由阴极向阳极进行迁移.由于Bi原子的扩散迁移速度比Sn原子要快,促使Bi原子首先到达阳极界面.大量的Bi原子聚集在阳极界面时,形成了压应力,迫使Sn原子向阴极进行迁移,于是在阳极界面处形成了连续的Bi层.阴极处由于金属原子的离去,形成了拉应力,导致了空洞和裂纹在界面处的形成.Bi层的形态主要分为平坦的Bi层和带有凹槽的Bi层.Bi原子进行扩散迁移的通道有三种:Bi晶界、Sn晶界和Sn/Bi界面.随着电流密度和通电时间的增加,Bi层的厚度逐渐增加.电迁移力和焦耳热的产生成为Bi原子扩散迁移的主要驱动力.  相似文献   

7.
利用SEM观察、聚焦离子束(FIB)微区分析和有限元模拟对比研究了直角型和线型Cu/Sn-58Bi/Cu微焊点在高电流密度下(1.5×10~4A/cm~2)的电迁移行为,从原子扩散距离和微区域电阻变化及阴阳极物相变化的角度研究了焊点结构变化对电迁移影响的机理.结果表明,2种焊点通电112和224 h后均发生了Bi向阳极迁移并聚集及Sn在阴极富集的现象;直角型焊点阳极由于Bi聚集后膨胀而产生压应力进而导致小丘状凸起和微裂纹出现,而阴极存在拉应力引发凹陷和微裂纹,且沿界面呈非均匀变化.微区组织分析表明,电迁移作用下焊点内部Bi原子的扩散速度大于Sn原子的扩散速度.观察分析和模拟结果还表明,具有结构不均匀性的直角型焊点中电子流易向电阻较小区域聚集而产生电流拥挤效应,这是引起直角型焊点电迁移现象严重的根本原因.  相似文献   

8.
郭沁涵  赵振江  沈春龙 《焊接学报》2017,38(10):103-106
对Cu/Sn-15Bi/Cu焊点在150℃下的电迁移组织演变进行了研究. 结果表明,焊点阳极侧出现了近共晶相的偏聚,近共晶相厚度随电迁移时间的延长而逐渐增加;受“电子风”力的影响,钎料中Cu6Sn5金属间化合物逐渐向阳极侧偏聚,此外,由于阴极侧Cu6Sn5界面金属间化合物的脱落,钎料中的Cu6Sn5金属间化合物体积分数逐渐增加;焊点阴极侧界面金属间化合物厚度随电迁移时间延长逐渐增加,阳极侧界面金属间化合物厚度随电迁移时间延长先增加,后降低,当电迁移时间超过5 h后,界面金属间化合物厚度迅速增加.  相似文献   

9.
在一定温度及电流密度下对Cu/SAC305(Sn-3.0Ag-0.5Cu)/Cu焊点进行不同加载时间的电迁移时效试验。分析了电-热耦合作用下,焊点界面IMC的生长机理及界面近区元素扩散特征。结果表明:电-热耦合作用下阳极界面IMC(金属间化合物)层厚度变化与加载时间成抛物线关系;阴极界面IMC层形貌变化显著,其厚度随加载时间的延长呈现先增厚后减薄的变化特征;焊点界面近区元素扩散分为两个阶段:初始阶段由于焊点各部分元素浓度相差悬殊,浓度梯度引起的元素扩散起主导作用,促进两极界面IMC厚度增加;扩散到一定程度后界面近区元素浓度梯度相对减小,电子风力引起的元素扩散占主导部分,促进阴极IMC分解阳极IMC形成,导致阴极IMC层厚度减薄,阳极IMC层厚度逐渐增大。  相似文献   

10.
Cu/Sn-58Bi/Cu焊点在电迁移过程中晶须和小丘的生长   总被引:1,自引:0,他引:1  
何洪文  徐广臣  郭福 《金属学报》2009,45(6):744-748
利用SEM和EDS研究了Cu/Sn--58Bi/Cu焊点在电流密度为5×103 A/cm2, 80℃条件下晶须和小丘的生长. 通电540 h后, 在焊点阴极界面区出现了钎料损耗, 同时形成了晶须, 而在阳极Cu基板的钎料薄膜上形成了大量弯曲状晶须和块状小丘. EDS检测表明, 这些 晶须和小丘为Sn和Bi的混合物. 通电630 h后, 阳极上的晶须和小丘数量明显增多, 原来形成晶须的尺寸和形状没有变化, 阴极界面处 形成Cu6Sn5金属间化合物. 上述现象表明: 电迁移引发了金属原子的扩散迁移, 从而在阳极Cu基板上形成了一层钎料薄膜. 钎料薄膜中金属间化合物的形成导致压应力的产生, 促使晶须和小丘生长, 而阴极钎料损耗区域内晶须的形成与Joule热聚集有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号