首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Recently, MXene are being extensively utilized as an electrode material for electrochemical capacitors owing to its excellent electrochemical performance. Furthermore, its excellent properties are enhanced by compounding it with other materials as the electrode material of electrochemical capacitor. In this study, MXene has been obtained by selective etching, Polythiophene (PTh) was prepared by chemical oxidative polymerization, and MXene/PTh composites with different mass ratios have been synthesized by the vacuum filtration self-assembly method. MXene nanosheets have the comprehensive function of combining PTh nanoparticles, and acting as flexible substrates. PTh nanoparticles can provide high pseudo-capacitance and inhibit the stacking of MXene, thus achieving a good synergistic effect. The results demonstrate that the M/PTh-3 composite has the best capacitance with a maximum value of 265.96 F g?1. The specific capacitance remains at 91.5% even after 500 cycles, which demonstrates that the composite electrode is a promising material for the high-performance electrochemical capacitor applications.

  相似文献   

2.
A novel polymer–carbon (PTh–C) nanocomposites containing different percentages of polythiophene (10, 20 and 50% (w/w)) and carbon (Vulcan XC-72) was prepared by a facile solution dispersion method and used to support platinum nanoparticles. The effect of using different percentages of polythiophene in nanocomposites and subsequently prepared electrocatalysts was investigated. The resultant electrocatalysts were extensively characterized by physical (X-ray diffraction (XRD) and transmission electron microscopy (TEM)) and electrochemical (cyclic voltammetry (CV)) techniques. The TEM results showed that the fine Pt nanoparticles prepared by ethylene glycol (EG) method were distributed on the surface of the 50% PTh–C nanocomposites successfully. From the XRD patterns, the average size of dispersed Pt nanoparticles with the face-centered cubic (fcc) structure on 50% PTh–C, 20% PTh–C, 10% PTh–C and carbon were about 4.9, 5.2, 5.4 and 6.1 nm, respectively. The conductivity of PTh–C with different percentages of pure PTh was compared with the conductivity of the corresponding support of pure PTh. It is observed that the conductivity of 50% PTh–C nanocomposites is about 600 times higher than that of pure PTh. Finally, CV measurements of hydrogen and methanol oxidations indicated that Pt/50% PTh–C had a higher electrochemical surface area and higher catalytic activity for methanol oxidation reaction compared to other electrocatalysts. These measurements showed that the Pt/50% PTh–C electrocatalyst by the value of 3.85 had higher \(I_{\mathrm{f}}/I_{\mathrm{b}}\) ratio with respect to Pt/10% PTh–C and Pt/20% PTh–C by the values of 2.66 and 2.0, respectively.  相似文献   

3.
A nanosized composite film based on polyoxometalate anion [Eu(SiW10VO39)2]15− (EuSiWV) and polyethyleneimine (PEI) has been synthesized by layer-by-layer (LBL) self-assembly. The components and growth processes of the film have been determined by X-ray photoelectron spectra and ultraviolet-visible absorption spectra. The results showed that the composite film was formed by the alternate adsorption of EuSiWV and PEI, and the deposition process was quantitative and highly reproducible from layer to layer. Atomic force microscopy images indicated that the surface of the film was relatively uniform and smooth. The EuSiWV salt aggregated into nanoclusters with approximately 10 nm mean grain size, distributing on the surface uniformly. The surface roughness was approximately 2.4 nm. Fluorescence properties of the film were consistent with those of the solid sample, exhibiting obvious activity of fluorescence and incarnating the characteristic luminescence of Eu3+. In addition, the electrochemical behavior of the film has also been investigated, demonstrating that the electrochemical property of EuSiW10V was fully maintained in the LBL film.  相似文献   

4.

Supercapacitors have the characteristics of high specific capacitance, long cycle life and fast charging ability, which have shown extremely valuable applications in energy storage fields. Improving the electrode materials is a crucial approach to achieve high capacity. Vanadium nitride (VN) has higher theoretical capacitance than noble metal oxides, as well as better chemical stability and good electrical conductivity. Herein, a composite of VN nanowires with multiple cavities encapsulated in N-doped reduced graphene oxide lamellar layers (VNNWs@rGO) has been synthesized by facile freeze-casting and subsequent nitridation technique. The hierarchical VNNWs@rGO composite exhibited excellent supercapacitor performance: high capacitances of 222 and 65 F g?1 were achieved at current densities of 0.5 and 10 A g?1, respectively. The improved electrochemical performance is associated with the unique structural design: the N-doped rGO sheets endowed enhanced electric conductivity and chemical stability for VN, the interconnected laminar network of VNNWs@rGO are crucial for electrolyte penetration and charge transfer, and the cavities and nanoparticles inside the VN nanowires can provide abundant active sites for electric double-layer capacitor and pseudocapacitance.

  相似文献   

5.
Ni-Mo + PENi and Ni-Mo + PTh composite coatings have been prepared by nickel-molybdenum deposition from a bath containing a suspension of PENi or Th. These coatings were obtained at galvanostatic conditions, at a current density of j dep = − 0.100 A cm−2 and temperature of 293 K. A scanning electron microscope was used for surface morphology characterization of the coatings. The chemical composition of the coatings was determined by EDS. Electrochemical corrosion resistance investigations were carried out in 5 M KOH, using potentiodynamic and electrochemical impedance spectroscopy (EIS) methods. On the basis of these investigations it was found, that the composite coatings containing thiophene are more corrosion resistant in alkaline solution than the Ni-Mo + PENi coatings. This is caused by presence of the polymer on the coatings surface and decrease of corrosion active surface area of the coatings.  相似文献   

6.
Gold nanoparticles (NPs) incorporated mesoporous silica thin films (MSTFs) of varied gold contents from 4.64 to 29.15 wt.% were synthesized through a refined chemical modification to the mesopore surface using different amounts of silane with amino end group. The microstructures of the composite thin films were characterized and the off-resonant third-order optical nonlinearities of the composite thin films were investigated by Z-scan technique at 1064 nm. The resultant composite thin films showed increased third-order optical nonlinear susceptibility (χ(3)) from 4.26 × 10−11 to 9.24 × 10−10 esu at increased gold contents. The dependence of χ(3) on gold content have been discussed, which can be described by an exponent function y = y0 + Aex/t when the gold contents of the composite thin films were below 30 wt.%.  相似文献   

7.
We have experimentally studied how a thin mesostructured gold film, deposited onto one side of a porous anodic aluminum-oxide membrane, influences its optical spectral characteristics in a 200–900 nm wavelength range. It is established that the gold film only modifies the spectral characteristics of the composite membrane at light wavelengths above 500 nm. The presence of a thin gold film ensures the surface conductivity of membrane on a level of 3.4 × 106 Ω–1 m–1, retains optical transparency within 10–20%, leads to the appearance of anomalous dispersion in the long-wavelength part of the transmission spectrum, and reduces the bandgap width from 5.61 eV (in anodic aluminum oxide) to 4.51 eV (in the composite). The obtained anodic aluminum-oxide membranes with thin gold films can be used as transparent conducting electrodes in optoelectronic devices with large light transmitter/receiver active areas.  相似文献   

8.
The present work reports the electrochemical synthesis of H2SO4-doped polyaniline nanofibers (PANINFs) on conducting ITO substrate. The subsequent dissociation of HAuCl4 in an acidic solution of HNO3 and deposition of Au particles was carried out by using cyclic voltammetery (CV) to form Au particles decorated PANINFs (Au–PANINFs) composite film. Electrical conductivity of the Au particles decorated PANINFs has been measured by a two-probe method. Scanning electron microscopy (SEM) investigations of PANINFs and Au–PANINFs samples revealed good porous and fibrous structure with identical distribution of gold nanoparticles coupled with the surface of PANINFs. The average diameter of the PANINFs ranges from 184 nm to 210 nm. X-ray diffraction (XRD) and EDAX spectra also supported the formation of Au particles on the surface of PANINFs. The structural analysis was carried out by Raman spectroscopic technique. A possible mechanism for the formation of Au–PANINFs composite has been proposed.  相似文献   

9.
Germanium nanowires were grown on Au coated Si substrates at 380 °C in a high vacuum (5 × 10− 5 Torr) by e-beam evaporation of Germanium (Ge). The morphology observation by a field emission scanning electron microscope (FESEM) shows that the grown nanowires are randomly oriented with an average length and diameter of 600 nm and 120 nm respectively for a deposition time of 60 min. The nanowire growth rate was measured to be ∼ 10 nm/min. Transmission electron microscope (TEM) studies revealed that the Ge nanowires were single crystalline in nature and further energy dispersive X-ray analysis (EDAX) has shown that the tip of the grown nanowires was capped with Au nanoparticles, this shows that the growth of the Ge nanowires occurs by the vapour liquid solid (VLS) mechanism. HRTEM studies on the grown Ge nanowire show that they are single crystalline in nature and the growth direction was identified to be along [110].  相似文献   

10.
Needle-like silicon nanowires have been grown using gold colloid as the catalyst and silane (SiH4) as the precursor by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD). Si nanowires produced by this method were unique with sharpness below 3 nm. High resolution transmission electron microscopy (HRTEM) and X-ray diffraction technique (XRD) confirmed the single crystalline growth of the Si nanowires with (111) crystalline structure. Raman spectroscopy also has revealed the presence of crystalline Si in the grown Si nanowire body. In this research, presence of a gold nanoparticle on tip of the nanowires proved vapor–liquid–solid growth mechanism.  相似文献   

11.
β-SiC nanowires were directly synthesized by heating single-crystal silicon wafer and graphite without metal catalysts. The diameter of SiC nanowires is in the range of 10–30 nm, and the length is up to a few millimeters. Two kinds of SiC nanowires, namely pure SiC nanowires and SiC/SiO2 composite nanowires, formed at higher temperature (the holding stage) and lower temperature (the cooling stage), respectively. A multiple-reaction model was proposed to explain the formation of SiC nanowires.  相似文献   

12.
Helix-coiled gold nanowires were fabricated by a templating route using unique composite templates consisting of anodic aluminum oxide (AAO) nanotubular membrane and confined mesoporous silica therein. A different degree of confinement energy induces a different degree of helix curvature of confined porous silica nanochannels in an AAO, which works as a hard template for the electrochemical deposition of gold, thereby rationally enabling a different degree of helix curvature of gold nano-replicas. From surface-enhanced Raman scattering experiments, we first found that helix-coiled gold nanowires show more distinctly enhanced molecule sensing efficiency than those from simple smooth gold nanowires, and gold nanowires with the narrower lateral width show more enhanced molecule sensing efficiency than those of thicker width helix nanowires.  相似文献   

13.
This paper reports the electrochemical synthesis and characterization of one dimensional hard magnetic CoPtP nanowires. Three electrode potentiostatic electrochemical technique was used to deposit nanowires into a nanoporous track-etched polycarbonate membrane with a nominal pore diameter 50 nm and thickness around 6-9 μm. The room temperature electrolyte used for the deposition of nanowires consists of 60 g/lt CoSO47H2O, 4.1 g/lt H2PtCl6, 4.5 g/lt NaHPO2 and 25 g/lt B(OH)3. The structural morphology was observed by scanning electron microscope and transmission electron microscope. The magnetic property of the nanowires was measured by vibrating sample magnetometer before removing the template. The coercive fields were measured to be 143 kA m− 1 and 103 kA m− 1 for parallel (H) and perpendicular to the nanowire axis, respectively. The higher coercivity value for H indicating nanowires' easy magnetization direction lies along the nanowires' axis. The average composition of the CoPtP nanowires was determined by electron dispersive spectroscopy and the crystallinity was measured by X-ray diffractometer.  相似文献   

14.
Schottky diode junctions were formed between nanowires of cadmium sulfide and nanowires of gold, through sequential cathodic electrodeposition into the pores of anodized aluminum oxide (AAO) templates. Lengths of CdS and Au nanowires were 100-500 nm and 300-400 nm respectively, while the diameter was 30 nm, each. Analysis of Schottky diodes yielded an effective reverse saturation current (Jo), of 0.32 mA/cm2 and an effective diode ideality factor (A) of 8.1 in the dark. Corresponding values under one sun illumination were, Jo = 0.92 mA/cm2 and A = 10.0. Dominant junction current mechanisms are thought to be tunneling and/or interface state recombination.  相似文献   

15.
In an attempt to produce glittering gold fibers with high modulus and high strength, gold plating on the surface of poly(p-phenylene benzobisoxazole) (PBO) fibers was carried out by using an electroless plating method. Due to the difficulty in plating gold directly on organic and inorganic fibers, gold plating was carried out on the surface of copper-plated and nickel-plated fibers; for the latter the nickel was plated on the copper-plated fibers. Namely, composite fibers, termed PBO/Cu/Au and PBO/Cu/Ni/Au, were prepared. The morphology of plated fibers was studied by X-ray diffraction, scanning electron microscopy with energy dispersive spectroscopy and electrochemical polarization measurements. It was found that gold was uniformly plated on the PBO fiber, and the gold-plated fibers have good corrosion resistance. The electrical conductivities of the two kinds of gold-plated fibers were higher than 4 × 104 S/cm, and their tensile strengths and Young’s moduli were greater than 1.9 GPa and 130 GPa, respectively, when estimated in terms of a single composite fiber.  相似文献   

16.
Electrochemical and laser-induced etching processes were simultaneously used to synthesize the nanowires structure of porous silicon (PS). Surface morphology and structural properties of nanostructured silicon were characterized by using scanning electron microscopy (SEM) and atomic forces microscopy (AFM) images. Nanowires with dimensions of few nanometers were formed on the whole etched surface. The optical properties of silicon nanostructures were studied. Raman spectra were shifted and broadened relatively to 519.9 cm−1 of PS prepared by electrochemical etching, and shifted to 517.2 cm−1 for laser-induced etching process and to 508.9 cm−1 for electrochemical and laser etching simultaneously. Blue shift luminescence was observed at 649.6 nm for PS produced by electrochemical etching, and at 629.5 nm for laser-induced etching. PS produced a blue shift at 626.5 nm using both etching procedures simultaneously. X-Ray diffraction (XRD) was used to investigate the crystallites size of the PS as well as to provide an estimate of the degree of crystallinty of the etched sample.  相似文献   

17.
One-dimensional ZnMn2O4 nanowires have been prepared and investigated as anode materials in Li rechargeable batteries. The highly crystalline ZnMn2O4 nanowires about 15 nm in width and 500 nm in length showed a high specific capacity of about 650 mAh·g−1 at a current rate of 100 mA·g−1 after 40 cycles. They also exhibited high power capability at elevated current rates, i.e., 450 and 350 mAh·g−1 at current rates of 500 and 1000 mA·g−1, respectively. Formation of Mn3O4 and ZnO phases was identified by ex situ X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies after the initial discharge-charge cycle, which indicates that the ZnMn2O4 phase was converted to a nanocomposite of Mn3O4 and ZnO phases immediately after the electrochemical conversion reaction.  相似文献   

18.
《Materials Letters》2004,58(17-18):2326-2330
HAuCl4 was reduced by ethylene glycol, in the presence of polyvinylpyrrolidone (PVP) under microwave (MW) heating in a continuous wave (CW) mode for 2 min. Dominant products were polygonal nanoplates and close-to-spherical nanoparticles of gold. In addition, small amounts of single crystalline gold nanorods and nanowires (0.5–3% of total number of products) with diameters of 20–100 nm and lengths of 0.6–5 μm were produced. The diameter and length of gold nanorods and nanowires could be controlled by changing the HAuCl4·4H2O/PVP ratio. The formation mechanism of anisotropic gold nanostructures was discussed.  相似文献   

19.
In this paper, electronic transport properties of electrodeposited copper telluride (Cu2Te) nanowires at room temperature (303 K) embedded in polycarbonate track-etch membranes (Whatman, 6 μm thick, pores density of order 108 pores/cm2) as template with pores of diameter 200, 100 and 50 nm have been reported. Scanning electron microscopy equipped with energy dispersive X-ray spectrometer and X-ray diffractometry (XRD) were used to characterize the morphology and structure of the nanowires. IV measurements of copper telluride nanowires of different diameter have shown symmetric and ohmic behavior in the voltage range used in this experiment. The temperature (T) dependent electrical conductivity measurements over a temperature (T) range of 308–423 K reveal that the electrical conductivity increases with increasing temperature and decreases as the size of the nanowires reduces. The electrical conductivity (at T ≥ room temperature) was observed significantly higher in copper telluride nanowires of higher diameter compared to lower diameter which attributes to the size effect. The activation energies (E a ) are found to be 2.34, 3.11 and 5.01 meV in low-temperature range of 308–340 K and 0.15, 0.28 and 0.57 meV in high-temperature range of 340–423 K for 200, 100 and 50 nm nanowires respectively. The temperature dependence of electrical resistance measurements has shown the nanowires have negative temperature coefficient of resistance (TCR).  相似文献   

20.
A simple one-step process for preparation of oriented arrays of porous gold microsheaths has been developed by dissolution of sacrificial templates of aligned Ag nanowires in a mixture solution of HAuCl4 and NaCl at room temperature. The morphology and crystal structure of the product were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). Its composition was estimated by energy dispersive X-ray spectroscopy (EDX). The results indicated that the gold microsheaths had generally preserved the original orientation of Ag nanowires and their orientation was robust enough to survive the centrifugal process. The gold microsheaths consist of nanoparticles (ca. 100 nm) that form nanovoids (tens to hundreds of nanometers) between them, giving them a porous nature. Such arrays of well oriented gold microsheaths are expected to show interesting anisotropic optical and electronic properties, and their hollow porous structures might find broad potential applications in surface plasma resonance (SPR), catalysis and chemical sensing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号