首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The fatigue crack growth behaviour in as-cast and hot isostatically pressed (HIP) model cast aluminium piston alloys with hypoeutectic Si compositions of 6.9 wt% and 0.67 wt% has been investigated. The HIP alloys showed slightly improved fatigue crack growth resistance. Analysis of the crack path profiles and fracture surfaces showed that the crack tends to avoid Si and intermetallic particles at low ΔK levels up to a mid-ΔK of ∼7 MPa√m. However, some particles do fail ahead of the crack tip to facilitate crack advance due to the interconnected microstructure of these alloys. At higher levels of ΔK, the crack increasingly seeks out Si and intermetallic particles up to a ΔK of ∼9 MPa√m after which the crack preferentially propagates through intermetallic particles in the 0.67 wt%Si alloy or Si and intermetallics in the 6.9 wt%Si alloys. It was also observed that crack interaction with intermetallics caused crack deflections that led to roughness-induced crack closure and possibly oxide-induced crack closure at low to mid-ΔK. However, crack closure appears unimportant at high ΔK due to the large crack openings and evidenced by the fast crack growth rates observed.  相似文献   

2.
The effects of cryorolling (CR) on high cycle fatigue (HCF) and fatigue crack growth rate behaviour of Al 7075 alloy have been investigated in the present work. The Al 7075 alloy was rolled for different thickness reductions (40% and 70%) at cryogenic (liquid nitrogen) temperature and its tensile strength, fatigue life, and fatigue crack growth mechanism were studied by using tensile testing, constant amplitude stress controlled fatigue testing, and fatigue crack growth rate testing using load shedding (decreasing ΔK) technique. The microstructural characterization of the alloy was carried out by using Field emission scanning electron microscopy (FESEM). The cryorolled Al alloy after 70% thickness reduction exhibits ultrafine grain (ufg) structure as observed from its FESEM micrographs. The cryorolled Al 7075 alloys showed improved mechanical properties (Y.S, U.T.S, Impact energy and Fracture toughness are 430 Mpa, 530 Mpa, 21 J, 24 Mpa m1/2 for 40CR alloy) as compared to the bulk 7075 Al alloy. It is due to suppression of dynamic recovery and accumulation of higher dislocations density in the cryorolled Al alloys. The cryorolled Al alloy investigated under HCF regime of intermediate to low plastic strain amplitudes has shown the significant enhancement in fatigue strength as compared to the coarse grained (CG) bulk alloy due to effective grain refinement. Fatigue crack growth (FCGR) resistance of the ufg Al alloy has been found be higher, especially at higher values of applied stress intensity factor ΔK The reasons behind such crack growth retardation is due to diffused crack branching mechanism, interaction between a propagating crack and the increased amount of grain boundaries (GB), and steps developed on the crack plane during crack-precipitate interaction at the GB due to ultrafine grain formation.  相似文献   

3.
Abstract

The microstructural and wear properties of spray formed Al–6.5Si, Al–18Si and Al–18Si–5Fe–1.5Cu (wt-%) alloys have been investigated. The microstructure of the Al–6.5Si alloy exhibits the equiaxed grain morphology of the primary α-Al phase with eutectic Si at the grain boundaries. The size of the primary Si particulates in the Al–18Si alloy varied from 3 to 8 μm embedded in the eutectic matrix. Complex intermetallic phases such as β-Al5 SiFe and δAl4 Si2 Fe are observed to co-exist with primary Si in the spray formed Al–18Si–5Fe–1.5Cu alloy system. The periphery of the preforms invariably showed pre-solidified particles with a large amount of interstitial pores. An extrusion ratio of 6 : 1 for these alloys led to drastic porosity reduction and extensive breaking of second phase particles. These microstructural features showed distinct variation in the wear behaviour and the coefficient of friction of the alloys. The Al–18Si–5Fe–1.5Cu alloy shows better wear resistance compared with the other two alloys, particularly at higher loads. The coefficient of friction shows a dependence upon the applied load. However, this becomes steady at higher loads. The wear behaviour of these alloys is discussed in light of the morphology of debris particles as well as that of the worn surfaces.  相似文献   

4.
Abstract

The effects of Mn dispersoids on the enhancement of mechanical properties in Al–Mg–Si(–Mn) alloys have been studied to develop a new high Mn alloy which does not need an aging heat treatment after a shaping process (i.e. extrusion process). By adding Mn to Al–Mg–Si alloys, sphere- or rod shaped Mn dispersoids of a size ranging from 0·05 to 0·5 μm are formed by the use of proper heat treatments. The as extruded alloys containing 1·0 wt-%Mn are measured to have higher tensile properties with good ductility, as compared with those of the commercial Al alloy 6N01 (Al–0·69Mg–0·79Si–0·48Cu–0·27Zn–0·37Mn–0·3Cr– 0·11Ti, wt-%). These phenomena are obtained from the dispersion hardening effect and homogeneous deformation by Mn dispersoid particles acting as obstacles to dislocation movement. Comparing the fatigue crack growth behaviour between the high Mn alloys and the commercial 6N01 alloy in the as forged condition, high Mn alloys are shown to have higher fatigue crack growth resistance and show a more tortuous crack path. This result can be explained by the increasing energy absorption through crack deflections and tortuous crack paths by the Mn dispersoids.  相似文献   

5.
《Materials Letters》2004,58(1-2):257-261
Fatigue crack growth test was performed for rheocast and thixocast Al–Si–Mg aluminum alloys. At small stress intensity factor range (ΔK), fatigue crack growth (FCG) rate of sample with coarse acicular Si particles decreased slightly compared with specimen with small acicular Si particles. However, at large ΔK, fatigue crack growth rate of specimen with coarse acicular Si particles drastically increased. This is because large acicular Si particles induce high strain hardening at small ΔK, but such particles are easily cracked with the increase in ΔK. Morphology of the Si particles strongly affects striation formation.  相似文献   

6.
Mechanical fatigue tests were conducted on uniaxial specimens machined from a cast A356-T6 aluminium alloy plate at total strain amplitudes ranging from 0.1 to 0.8% ( R = − 1). The cast alloy contains strontium-modified silicon particles (vol. fract. ~6%) within an Al–Si eutectic, dispersed α intermetallic particles, Al15 (Fe,Mn)3 Si2 (vol. fract. ~1%), and an extremely low overall volume fraction of porosity (0.01%). During the initial stages of the fatigue process, we observed that a small semicircular fatigue crack propagated almost exclusively through the Al–1% Si dendrite cells. The small crack avoided the modified silicon particles in the Al–Si eutectic and only propagated along the α intermetallics if they were directly in line with the crack plane. These growth characteristics were observed up to a maximum stress intensity factor of ~ K trmax = 7.0 MPa m1/2 (maximum plastic zone size of 96 μm). When the fatigue crack propagated with a maximum crack tip driving force above 7.0 MPa m1/2 the larger fatigue crack tip process zone fractured an increased number of silicon particles and α intermetallics ahead of the crack tip, and the crack subsequently propagated preferentially through the damaged regions. As the crack tip driving force further increased, the area fraction of damaged α intermetallics and silicon particles on the fatigue fracture surfaces also increased. The final stage of failure (fast fracture) was observed to occur almost exclusively through the Al–Si eutectic regions and the α intermetallics.  相似文献   

7.
The drive for increasing fuel efficiency and decreasing anthropogenic greenhouse effect via lightweighting leads to the development of several new Al alloys. The effect of Mn and Fe addition on the microstructure of Al‐Mg‐Si alloy in as‐cast condition was investigated. The mechanical properties including strain‐controlled low‐cycle fatigue characteristics were evaluated. The microstructure of the as‐cast alloy consisted of globular primary α‐Al phase and characteristic Mg2Si‐containing eutectic structure, along with Al8(Fe,Mn)2Si particles randomly distributed in the matrix. Relative to several commercial alloys including A319 cast alloy, the present alloy exhibited superior tensile properties without trade‐off in elongation and improved fatigue life due to the unique microstructure with fine grains and random textures. The as‐cast alloy possessed yield stress, ultimate tensile strength, and elongation of about 185 MPa, 304 MPa, and 6.3%, respectively. The stress‐strain hysteresis loops were symmetrical and approximately followed Masing behavior. The fatigue life of the as‐cast alloy was attained to be higher than that of several commercial cast and wrought Al alloys. Cyclic hardening occurred at higher strain amplitudes from 0.3% to 0.8%, while cyclic stabilization sustained at lower strain amplitudes of ≤0.2%. Examination of fractured surfaces revealed that fatigue crack initiated from the specimen surface/near‐surface, and crack propagation occurred mainly in the formation of fatigue striations.  相似文献   

8.
High cycle fatigue (HCF) life in cast Al-Mg-Si alloys is particularly sensitive to the combination of microstructural inclusions and stress concentrations. Inclusions can range from large-scale shrinkage porosity with a tortuous surface profile to entrapped oxides introduced during the pour. When shrinkage porosity is controlled, the relevant microstructural initiation sites are often the larger Si particles within eutectic regions. In this paper, a HCF model is introduced which recognizes multiple inclusion severity scales for crack formation. The model addresses the role of constrained microplasticity around debonded particles or shrinkage pores in forming and growing microstructurally small fatigue cracks and is based on the cyclic crack tip displacement rather than linear elastic fracture mechanics stress intensity factor. Conditions for transitioning to long crack fatigue crack growth behavior are introduced. The model is applied to a cast A356-T6 Al alloy over a range of inclusion severities.  相似文献   

9.
This paper considers two candidate automotive piston alloys and highlights the influence of microstructural features on fatigue behaviour. Fatigue initiation and subsequent short crack growth was assessed at 20, 200 and 350 °C. It is shown that both temperature and test frequency have a strong influence on the fatigue performance of the materials tested. The microstructure was quantitatively characterised in terms of the primary Si distribution. Together with post failure analysis, this allowed identification of critical microstructural features affecting both fatigue crack initiation and early growth. Large primary Si particles were found to act as preferential initiation sites by cracking or decohesion (dependent on test temperature) and are also sought out preferentially during short crack growth.  相似文献   

10.
This paper presents the investigation on fatigue crack growth behaviour of Al–Zn and Al–Zn–Ce alloys. Fatigue tests were carried out on as‐cast and heat‐treated CT specimens according to ASTM E647 testing standard. The test results showed that the addition of rare earth element (cerium) and heat treatments (T6 and T5) had very strong influence on fatigue strength. This enhancement was due to metallurgical changes in the alloy system. Cerium eliminates the porosities and refines microstructures of the alloy, showing the improved fatigue crack growth behaviour. In addition, the fatigue fractured specimens were examined using a scanning electron microscope to clarify the fracture initiation points.  相似文献   

11.
Abstract

The strength and toughness of four high silicon content Al–Si–Mg–Cu alloys have been studied at room temperature (RT), 200°C and 300°C. The fatigue behaviour has also been investigated. The alloys were produced using two very different processing routes: lost foam and squeeze casting. In the tensile tests, the ductility was low for alloys produced via both routes irrespective of the testing temperature. The strength was similar at RT and 200°C, but at 300°C it fell abruptly. The toughness followed the same trend with testing temperature. Direct observation of fatigue cracks revealed that the brittle silicon and intermetallic particles broke ahead of the crack tip; the fatigue crack advanced by linking the main crack with cracks formed ahead of it. The T6 thermal treatment improved fatigue resistance in the squeeze cast material, especially at high D K values.  相似文献   

12.
Abstract

The effects of aging temperature and aging time on fatigue crack growth resistance have been studied for a 7475 Al-Zn-Mg based aluminium alloy. The alloy was tested in the underaged, peak aged, and overaged conditions after aging at 120 and 160C. Fatigue crack propagation tests were conducted in laboratory air using compact tension specimens in L-S orientation, under constant amplitude sinusoidal loading with an R ratio of zero. Results are discussed on the basis of resultant microstructures, fatigue crack growth rate diagrams and fractographic analysis. At 120C, a considerable effect of aging time on crack velocities at high stress intensities was seen. However, at 160C no significant dependency of crack growth rate on aging time was observed. The fatigue performance of overaged specimens was better for both aging temperatures. Also, lower aging temperature resulted in a more resistant structure against fatigue crack growth. Fractographic inspection showed that intermetallic particles play an important role in the crack growth behaviour of the Al-Zn-Mg alloy.  相似文献   

13.
Ti_2 Al Nb-based intermetallic compounds are considered as a new category of promising lightweight aerospace materials due to their balanced mechanical properties. The aim of this study was to evaluate monotonic and cyclic deformation behavior of an as-cast Ti-22 A1-20 Nb-2 V-1 Mo-0.25 Si(at.%) intermetallic compound in relation to its microstructure. The alloy containing an abundant fine lamellar O-Ti_2 Al Nb phase exhibited a good combination of strength and plasticity, and superb fatigue resistance in comparison with other intermetallic compounds. Cyclic stabilization largely remained except slight cyclic hardening occurring at higher strain amplitudes. While fatigue life could be described using the common Coffin-Mason-Basquin equation, it could be better predicted via a weighted energy-based approach.Fatigue crack growth was characterized mainly by crystallographic cracking, along with fatigue striationlike features being unique to appear in the intermetallics. The results obtained in this study lay the foundation for the safe and durable applications of Ti_2 Al Nb-based lightweight intermetallic compounds.  相似文献   

14.
The short fatigue crack growth behaviour in a model cast aluminium piston alloy has been investigated. This has been achieved using a combination of fatigue crack replication methods at various intervals during fatigue testing and post‐mortem analysis of crack profiles. Crack–microstructure interactions have been clearly delineated using a combination of optical microscopy, scanning electron microscopy and electron backscatter diffraction. Results show that intermetallic particles play a significant role in determining the crack path and growth rate of short fatigue cracks. It is observed that the growth of short cracks is often retarded or even arrested at intermetallic particles and grain boundaries. Crack deflection at intermetallics and grain boundaries is also frequently observed. These results have been compared with the long crack growth behaviour of the alloy.  相似文献   

15.
In this work,the effect of microstructure features on the high-cycle fatigue behavior of Ti-7Mo-3Nb-3Cr-3Al(Ti-7333)alloy is investigated.Fatigue tests were carried out at room temperature in lab air atmosphere using a sinusoidal wave at a frequency of 120 Hz and a stress ratio of 0.1.Results show that the fatigue strength is closely related to the microstructure features,especially the αp percentage.The Ti-7333 alloy with a lower αp percentage exhibits a higher scatter in fatigue data.The bimodal fatigue behavior and the duality of the S-N curve are reported in the Ti-7333 alloy with relatively lower αp percentage.Crack initiation region shows the compound αp/β facets.Faceted αp particles show crystallographic orientation and morphology dependence characteristics.Crack-initiation was accompanied by faceting process across elongated αp particles or multiple adjacent αp particles.These particles generally oriented for basal slip result in near basal facets.Fatigue crack can also initiate at elongated αp particle well oriented for prismaticslip.The β facet is in close correspondence to{110}or{112}plane with high Schmid factor.Based on the fracture observation and FIB-CS analysis,three classes of fatigue-critical microstructural configurations are deduced.A phenomenological model for the formation of αp facet in the bimodal microstructure is proposed.This work provides an insight into the fatigue damage process of the α precipitate strengthened metastable β titanium alloys.  相似文献   

16.
Abstract— A systematic study of the fatigue crack growth characteristics and mechanisms in Al–Si–Mg and A356 casting alloys was carried out. Compact tension specimens, prepared from modified and unmodified alloys were tested at different stress ratios and stress intensity factor range values, and a study of the mechanistic role of the silicon particles in influencing the fracture behaviour during fatigue crack propagation was made, employing both optical and scanning electron microscopy. The results indicated that the fatigue crack growth behaviour of the alloys is affected by the stress ratio, stress intensity level and the size, shape and distribution of the eutectic silicon particles. The particle characteristics also determine the fracture mode of the alloy. Fracture Characteristics observed include decohesion of the silicon particles from the aluminum matrix; silicon particle cleavage/cracking; and striations in the aluminum phase, particularly at high stress ratios.  相似文献   

17.
Based on the concept of the damage-tolerance and durability design, the total fatigue life of titanium alloys is divided into three phases: crack initiation (0–0.3 mm), short crack growth (0.3–2 mm) and long crack growth (2 mm–aC). Among these three phases, different prediction models are accepted due to different failure mechanisms. A computer program was developed to predict the total fatigue life of the titanium alloy structure. Fatigue testing is also conducted for two types of ELI grade titanium alloy to verify the prediction models. The predicted fatigue life agrees well with experimental results.  相似文献   

18.
Fatigue crack initiation and subsequent short crack growth behaviour of 2014-5wt%SiC aluminium alloy composites has been examined in 4-point bend loading using smooth bar specimens. The growth rates of long fatigue cracks have also been measured at different stress ratios using pre-cracked specimens. The distributions of Sic particles and of coarse constituent particles in the matrix (which arise as a result of the molten-metal processing and relatively slow cooling rate) have been investigated. Preferential crack initiation sites were found to be Sic-matrix interfaces, Sic particles associated with constituent particles and the coarse constituent particles themselves. For microstructurally short cracks the dispersed SiC particles also act as temporary crack arresters. In the long crack growth tests, higher fatigue crack growth rates were obtained than for monolithic alloys. This effect is attributed to the contribution of void formation, due to the decohesion of Sic particles, to the fatigue crack growth process in the composite. Above crack depths of about 200 μm “short” crack growth rates were in good agreement with the long crack data, showing a Paris exponent, m= 4 in both cases. For the long crack and short crack growth tests little effect of specimen orientation and grain size was observed on fatigue crack growth rates, but, specimen orientation affected the toughness. No effect of stress ratio in the range R=0.2-0.5 was seen for long crack data in the Paris region.  相似文献   

19.
The microstructure of aluminium piston alloys comprises primary and eutectic silicon together with numerous intermetallics. Previous research has shown that primary silicon strongly influences both fatigue crack initiation and subsequent propagation behaviour, however, the detailed effects of varying silicon volume fraction and morphology have not been fully addressed. Therefore, the fatigue properties of a number of candidate piston alloys with varying volume fractions of silicon have been studied. Long crack fatigue tests have been performed at room and elevated temperature typical of the gudgeon pin boss (200 °C) using a test frequency of 15 Hz (a typical engine frequency at engine idle condition).Microstructural characterisation using image analysis approaches combined with optical profilometry has been used to assess the fracture surfaces of test samples. The role of primary Si in enhancing crack growth rates at high ΔK levels, whilst affording improvements in crack growth rates at lower ΔK levels due to local crack deflections and shielding, has been confirmed. In the absence of primary Si (lower Si content alloys) the low ΔK level crack growth behaviour is dominated by matrix properties (intra-dendritic crack growth pre-dominates) whilst the high ΔK level crack growth behaviour is inter-dendritic and occurs along the weak path of the eutectic Si and/or intermetallic network.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号