首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 282 毫秒
1.
Sr2Ce2Ti5O16 dielectric ceramics were prepared by conventional solid-state ceramic route. The structure and microstructure of the ceramics were investigated by X-ray diffraction and scanning electron microscopic methods. The Sr2Ce2Ti5O16 has a psuedocubic structure. It has ɛr of 113, unloaded quality factor (Qu × f) of 8000 GHz and temperature coefficient of resonant frequency of 306 ppm/°C. The effects of various dopants on the structure, microstructure and microwave dielectric properties of the material have been investigated. It is found that addition of small amount of dopants such as PbO, Al2O3, Nd2O3, MoO3, CeO2, La2O3, Fe2O3 and NiO improve the microwave dielectric properties of Sr2Ce2Ti5O16.  相似文献   

2.
《Materials Letters》2007,61(14-15):3093-3095
High dielectric constant and low loss ceramics in the system Ba3La2Ti2Nb2−xTaxO15 (x = 0–2) have been prepared by conventional solid-state ceramic route. Ba3La2Ti2Nb2−xTaxO15 solid solutions adopted A5B4O15 cation-deficient hexagonal perovskite structure for all compositions. The materials were characterized at microwave frequencies. They show a linear variation of dielectric properties with the value of x. Their dielectric constant varies from 49.8 to 45.1, quality factor Qu × f from 22,000 to 31,040 GHz and temperature variation of resonant frequency from + 6.9 to − 13.4 ppm/°C as the value of x increases. These low loss ceramics might be used for dielectric resonator (DR) applications.  相似文献   

3.
Undoped and La2O3doped (0.5, 1.0, 2.0, 3.0 wt.%) Ba0.55Sr0.45TiO3/MgO composites were prepared by traditional ceramic processing and their structural, surface morphological, tunable properties and their dielectric properties at low frequency and microwave frequency were systemically examined. The result shows that La2O3 dopant has a strong effect on the average grain size. The La2O3 doped samples have lower temperature coefficient of capacitance than the undoped. The 0.5 wt.% La2O3 doped sample has a little higher tunability than the undoped and the tunability of other doping concentration samples is lower as compared to the undoped. The addition of La2O3 decreases the dielectric constant and increases quality factor (Q × f) at microwave frequency. The 0.5 wt.% La2O3 doped samples have the best properties among these samples and have a higher tunability, lower dielectric constant and lower dielectric loss tangent at microwave frequency and these properties are very beneficial to the development of the tunable devices application.  相似文献   

4.
Present work introduces a new kind of microwave dielectric ceramic, Ba4Ti3P2O15. Ba4Ti3P2O15 ceramic can be prepared by solid state reaction method and be well densified after being sintered at above 1175 °C for 4 h in air. All the XRD patterns can be fully indexed as single-phase structure. The best microwave dielectric properties can be obtained in ceramic sintered at 1200 °C for 4 h with permittivity about 20.7, Q × f about 42,210 GHz and TCF about 37 ppm °C?1. Measurements of the microwave dielectric properties of Ba4Ti3P2O15 ceramic revealed the existence of a maximum in the temperature dependence of the dielectric loss because of the defect dipoles relaxation.  相似文献   

5.
The perovskite La0.6Sr0.4M0.3Fe0.7O3?δ (M = Co, Ti) powders have been synthesized by the citrate gel method. The structural and chemical stability of the La0.6Sr0.4M0.3Fe0.7O3?δ (M = Co, Ti) oxides were studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) techniques. The electrical conductivities of the sintered La0.6Sr0.4M0.3Fe0.7O3?δ (M = Co, Ti) ceramics were measured. The results demonstrate the chemical stability in H2/helium (He) atmosphere of the La0.6Sr0.4Ti0.3Fe0.7O3?δ oxide is improved significantly compared to that of the La0.6Sr0.4Co0.3Fe0.7O3?δ oxide. The incorporation of Ti3+/4+ ions in the perovskite structure can significantly stabilize the neighboring oxygen octahedral due to the stronger bonding strength, leading to the enhanced structural and chemical stability of the La0.6Sr0.4Ti0.3Fe0.7O3?δ. In addition, the perovskite La0.6Sr0.4M0.3Fe0.7O3?δ (M = Co, Ti) oxides possess much higher chemical stability in CO2/He atmosphere than that of Ba0.5Sr0.5Co0.8Fe0.2O3?δ oxide, in which the perovskite structure is destroyed completely in a flowing CO2-containing atmosphere.  相似文献   

6.
The Sr2La8(SiO4)6O2:Ce3+ powder phosphor with apatite structure has been successfully synthesized via a facile route of sol-combustion technique. X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and photoluminescence (PL) spectroscopy were used to characterize the as-prepared samples. Sr2La8(SiO4)6O2:Ce3+ phosphor was composed of particles with average sizes range about 300 nm. The phosphor exhibited an absorption ranging from 220 to 390 nm in ultraviolet range and a broad blue-violet emission band peaked at 403 nm with a CIE coordinates of (0.167, 0.028). The concentration quenching mechanism was also determined to be dipole–dipole interaction.  相似文献   

7.
The kinetic structural evolution of the Pb2+-doped La4Ti9O24 ceramics was investigated. Using electron diffraction and Rietveld analysis of the X-ray powder diffraction patterns, we show that the increase in Pb2+ doping results in the structural transition from La4Ti9O24 to a La2/3TiO3-type phase (Ibmm, No. 74). Further kinetic studies of Pb2+ diffusion into La4Ti9O24 ceramics suggest that the La4Ti9O24–La2/3TiO3 phase transition requires an activation energy of 607 ± 60 kJ/mol.  相似文献   

8.
We report an effective method to synthesize Y2O2S:Eu3+, Mg2+, Ti4+ nanoparticles. Tube-like Y(OH)3 were firstly synthesized by hydrothermal method to serve as the precursor. Nanocrystalline long-lasting phosphor Y2O2S:Eu3+, Mg2+, Ti4+ was obtained by calcinating the precursor with co-activators and S powder. XRD investigation shows a pure phase of Y2O2S, indicating no other impurity phase appeared. SEM and TEM observation reveals that the precursor synthesized via a hydrothermal routine has tube-like structure and the final phosphor reveals a hexagonal shape. The fine nanoparticles which have the particle size ranging from 30 to 50 nm show uniform size and well-dispersed distribution. From the spectrum, the main emission peaks are ascribed to Eu3+ ions transition from 5DJ (J = 0, 1, 2) to 7FJ (J = 0, 1, 2, 3, 4). After irradiation by 325 nm for 10 min, the Y2O2S:Eu3+, Mg2+, Ti4+ long-lasting phosphor shows very bright red afterglow and the longest could last for more than 1 h even after the irradiation source had been removed. It is considered that the long-lasting phosphorescence is due to the contribution from the electron traps with suitable trap depth.  相似文献   

9.
The phase structure, microstructure and dielectric properties of Na0.5Bi0.5?xLaxCu3Ti4O12 (NBLCTO) ceramics were investigated. La3+ substitution had a great influence on the phase structure and dielectric properties. The results showed that the pure phase could be more easily obtained when substituting La3+ for Bi3+. Under the same processing condition (970 °C for 7.5 h) and measuring condition (10 kHz around room temperature), NBLCTO ceramics with x = 0.10 possessed the highest permittivity (1.02 × 104) and lowest dielectric loss (0.022). The obtained NBLCTO ceramics with x = 0.10 also had good frequency stability and good temperature stability (?1.87% to +3.27%) from ?60 °C to 120 °C at both 1 and 10 kHz. Complex impedance results revealed that the grain resistance Rg was 7.18 Ω cm and the grain boundary resistance Rgb was 1.19 × 106 Ω cm.  相似文献   

10.
《Materials Letters》2006,60(9-10):1147-1150
A new A4B3O12-type cation-deficient perovskite Ba2La2TiNb2O12 was prepared by the conventional solid-state reaction route. The phase and structure of the ceramics were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM). The compound crystallizes in the trigonal system with unit cell parameter a = 5.6726(3) Å, c = 27.740(2) Å, V = 773.04(9) Å3 and Z = 3. The microwave dielectric properties of the ceramic were studied using a network analyzer, and it shows a high dielectric constant of 42.70, a high quality factor with Q × f of 31,130 GHz, and a small negative τf of − 4.2 ppm °C 1.  相似文献   

11.
A new low loss microwave dielectric ceramic with composition of CoLi2/3Ti4/3O4 was prepared by a conventional solid-state reaction method. The compound has a cubic spinel structure [Fd-3m (227)] similar to MgFe2O4 with lattice parameters of a = 8.3939 Å, V = 591.42 Å3, Z = 8 and ρ = 4.30 g/cm3. This ceramic has a low sintering temperature (~1050 °C) and good microwave dielectric properties with relative permittivity of 21.4, Q × f value of 35,000 GHz and τf value of ?22 ppm/°C. Furthermore, the addition of BaCu(B2O5) (BCB) can effectively lower the sintering temperature from 1050 °C to 900 °C and does not induce much degradation of the microwave dielectric properties. Compatibility with Ag electrode indicates that the BCB added CoLi2/3Ti4/3O4 ceramics are good candidates for LTCC applications.  相似文献   

12.
In this paper, effect of NH4Cl flux concentrations (0, 1, 2, 3 and 4 wt%) on the crystal structure, morphology and photoluminescent properties of Sr2SiO4:Eu3+ phosphors synthesized by a microwave sintering at 1200 °C for 1 h was investigated and discussed. X-ray powder diffraction analysis showed the crystal structure was not affected and the pure Sr2SiO4 phase was formed without second phase or phases of starting materials when adding with the NH4Cl flux. The SEM images indicated that increase of the NH4Cl flux enlarged the particle size of the phosphor particles. The photo-luminescence results showed the addition of 1 wt% NH4Cl flux much improved the emission intensity at λem of 617 nm as the excitation spectrum at λex of 395 nm. The decay times of Sr2SiO4:Eu3+ phosphors with different NH4Cl flux concentrations were obtained around 2.47–2.52 ms.  相似文献   

13.
Titanium modified Sr0.3Ba0.7Nb2O6 ceramic system has been studied in a wide range of compositions. As the sintering temperature exceeds the 1250 °C, the substitution of niobium by titanium induces liquid phase formation, which enhances the densities of the samples with compositions in the monophasic range. X-ray diffraction analysis shows a linear titanium incorporation into the Sr0.3Ba0.7Nb2−yTiyO6−y/2 system up to a solubility limit 0.07 < ym < 0.1, which it is also confirmed by the ferroelectric–paraelectric temperature transition. Both, the diffuse character of the system and the dielectric constant at room temperature increase as the Ti content increase. The dielectric constant (ɛr = 420) of the sample with a titanium content of 0.07 are two times higher than the reported for the SBN (30/70) system.  相似文献   

14.
《Materials Research Bulletin》2006,41(7):1385-1391
CaTi1−x(Fe0.5Nb0.5)xO3 (0  x  1) dielectrics were synthesized via the solid state reaction route and structure analysis was performed together with the dielectric characterization. The substitution of Ti4+ by Fe3+/Nb5+ and developed phase were studied by X-ray diffraction. The dielectric constant and temperature coefficient of resonant frequency decrease rapidly with an increase of x. The influence of 1–5 wt.% B2O3 as a sintering additive investigated at CaTi0.5(Fe0.5Nb0.5)0.5O3 solid solutions. The dielectric properties were found to strongly depend on the sintering conditions and contents of B2O3 additions. ɛr = 52.3, Q × fo = 2930 GHz and Tf = 13 ppm/°C were obtained for CaTi0.5(Fe0.5Nb0.5)0.5O3 specimen 3 wt.% B2O3 sintered at 900 °C for 2 h.  相似文献   

15.
Materials of the K2NiF4 structure type have been prepared and the electrical conductivity in air determined for a number of compositions in the LaxSr2−xFe1−yRuyOδ solid solution series including three with Ru substituted for Fe on the B site: La0.2Sr1.8Fe0.6Ru0.4Oδ, La0.4Sr1.6Fe0.7Ru0.3Oδ, and La0.6Sr1.4Fe0.8Ru0.2Oδ. Overall the total conductivity values measured were lower than expected for the Ru-doped materials, with a peak conductivity of ≈2 S cm−1 at 700 °C. In the undoped LaxSr2−xFeOδ materials, a significant jump in conductivity was observed between the x = 0.7 and 0.8 compositions and was related to the bonding in the materials and the Fe3+/Fe4+ redox behaviour. In all materials, the conduction behaviour was found to follow a semi-conducting trend.  相似文献   

16.
《Materials Letters》2006,60(17-18):2179-2183
Ba3−xSrxM4Ti4O21 (M = Nb, Ta and 0  x  3) ceramics have been prepared through solid state ceramic route. The structure and microstructure of the compositions have been studied using powder X-ray diffraction and Scanning Electron Microscopic studies. In the present study, both Ba3Nb4Ti4O21 and Ba3Ta4Ti4O21 are obtained as single phase compositions whereas strontium rich compositions exhibit multiphase in nature. Energy dispersive X-ray analysis has been performed to identify the nature of additional phases present in the strontium rich compositions. The dielectric constant, dielectric loss and temperature variation of dielectric constant of the well sintered ceramic specimens have been studied in the low frequency region (< 13 MHz) using an impedance analyzer. The present study reveals that high dielectric compositions can be realized by Sr-substitution in the BaO–TiO2–Nb2O5/Ta2O5 ternary systems.  相似文献   

17.
Effects of Sm3+ substitution on the microstructure and dielectric properties of CaCu3Ti4O12 ceramics were investigated. The grain size of CaCu3Ti4O12 ceramics was greatly decreased by doping with Sm3+, resulting from the ability of Sm3+ to inhibit the grain growth rate. This result can cause a decrease in the dielectric constant (?′) and loss tangent (tan δ) of CaCu3Ti4O12 ceramics. Interestingly, high dielectric permittivity (?  10,863) and low loss tangent (tan δ  0.043 at 20 °C and 1 kHz) were observed in the Ca0.925Sm0.05Cu3Ti4O12 ceramic. Nonlinear electrical properties of CaCu3Ti4O12 ceramics were modified by doping with Sm3+. The dielectric relaxation behavior of Sm-doped CaCu3Ti4O12 ceramics can be well ascribed based on the internal barrier layer capacitor model of Schottky barriers at the grain boundaries.  相似文献   

18.
《Materials Letters》2006,60(25-26):3179-3182
In this study, we report the high dielectric constant lanthanum substituted barium titanate ceramic material for its possible applications at microwave frequencies. The microwave dielectric characterization of Ba6  3xLa8 + 2xTi18O54 solid solutions with 0.0  x  0.7 prepared by conventional mixed oxide route method has been carried out. The lattice parameters were obtained from the X-ray diffraction patterns. It was observed that lattice parameters increased with respect to an increase in the ‘La’ content. The crystal symmetry investigated was orthorhombic with space group of Pbam. From the evaluation of microwave dielectric properties of lanthanum doped barium titanate ceramics, it was observed that a maximum value of dielectric constant (ε′) = 157 and a minimum tangent loss (tanδ) = 0.0572 was obtained. The minimum value of a.c. conductivity (σa.c.) was observed to be 1.76e  07 S/m.  相似文献   

19.
The luminescence properties of Sm2+ in Sr2B5O9R (R=Cl, Br) have been studied and compared with those in SrB4O7. In the range from 80 to 300 K the emission of Sm2+ in Sr2B5O9R is predominantly due to the 4f55d  4f6 transition, while SrB4O7 : Sm2+ shows a very efficient emission of the 4f6  4f6 type. Differences in the luminescence of Sm2+ in the strontium haloborates and tetraborate are discussed.  相似文献   

20.
《Materials Letters》2005,59(29-30):3921-3925
Polycrystalline samples of Pb0.9(La1  zFez)0.1(Zr0.65Ti0.35)0.975O3 [referred as PLFZT] (where z = 0.0, 0.3, 0.5 and 0.7) have been synthesized by a high-temperature solid-state reaction technique. X-ray diffraction analysis suggests the formation of single-phase compounds with tetragonal structure. The dielectric studies of the compounds as a function of temperature (from room temperature (RT) to 600 K) at a frequency 10 kHz show that the compounds undergo a phase transition of diffuse type. Diffusivity studies of the phase transition of these compounds provided its value between 1 and 2, indicating the variation of degree of disordering in the system. Measurement of dc resistivity (ρdc) as a function of temperature (RT to 600 K) at a constant biasing field dc 10 V/cm suggests that the compounds exhibit negative temperature coefficient of resistance (NTCR). The piezoelectric parameters as planar coupling coefficient, frequency constant and mechanical quality factor have been presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号