首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
目的研究Cu-Al_2O_3(0.68%)弥散强化铜合金高温圧缩塑性变形特性。方法在Gleeble-1500D热模拟试验机上,在变形温度为550,650,750,850,950℃,应变速率为0.01,0.1,1,5,10 s~(-1),变形量均为50%的条件下,对Cu-Al_2O_3(0.68%)铜合金进行热压缩变形试验。结果获得了不同热变形条件下的真应力应变曲线,建立了基于双曲正弦本构关系Arrhenius流动应力模型的本构方程,及基于动态材料模型(DMM)的热加工图。结论 Cu-Al_2O_3(0.68%)弥散强化铜合金高温压缩时,合金的热变形存在应变强化和稳态流变2个基本阶段,主要软化机制为动态再结晶。该合金的最佳变形区域温度为900~950℃,应变速率为0.2~2.8 s~(-1)。  相似文献   

2.
采用热模拟压缩试验对15%(体积分数)SiCp/Al复合材料在温度为623~773K、应变速率为0.001~10s~(-1)的热变形行为进行了研究,基于Murty准则建立了该材料的热加工图,并在此基础上建立了SiCp/Al复合材料临界失稳应变分布图。结果表明,随变形温度升高,SiCp/Al复合材料中的强化机制逐渐减弱,软化机制逐渐增强。基于临界失稳应变图可以确定出适合SiCp/Al复合材料加工的两个区域,分别为变形温度700~773K、应变速率0.001~0.01s~(-1)和变形温度740~773K、应变速率0.02~0.14s~(-1)。  相似文献   

3.
采用真空热压-内氧化烧结法制备了TiC(30vol%)/Cu-Al2O3复合材料,测试其基本性能,对其微观组织进行了观察分析。利用Gleeble-1500D热力模拟试验机,在变形温度450~850℃、应变速率0.001~1s-1、变形量50%的条件下,对TiC(30vol%)/Cu-Al2O3进行了热压缩变形试验。通过对流变应力进行分析和计算,构建了该复合材料的本构方程及动态再结晶临界应变模型。利用加工硬化率-应变曲线的拐点和对应偏导曲线最小值的判据,建立了动态再结晶临界应变与Zener-Hollomon参数之间的函数关系。结果表明:TiC(30vol%)/Cu-Al2O3复合材料的真应力-真应变曲线以动态再结晶软化机制为特征,峰值应力随变形温度的降低或应变速率的升高而增加;计算得出该复合材料的热变形激活能为211.384kJ/mol。  相似文献   

4.
采用热模拟实验对含Sc超高强Al-Zn-Cu-Mg-Zr合金在应变速率为0.001~10s-1、变形温度为380~470℃的条件下进行了热压缩实验.研究了实验合金的流变应力行为和微观组织演变.结果表明:流变应力随变形温度升高而下降;随应变速率增加峰值应力也相应增加.随变形温度升高和应变速率降低,合金动态再结晶的程度加深,亚晶尺寸变大.含Sc超高强Al-Zn-Cu-Mg-Zr合金,形成了Al3Sc弥散相,该相可强烈抑制再结晶.合金主要软化机制为动态回复伴随动态再结晶.  相似文献   

5.
采用Gleeble-1500D热模拟实验机研究ZnAl10Cu2合金在变形温度180~330℃、应变速率0.01~30s-1、真应变0.3~1.2时的热变形组织演化行为。结果表明:在不同变形条件下,共晶中的片状α2相发生了不同程度的球化和弯折,其球化程度随着应变速率的降低、变形温度的升高、真应变的增大而增加;同时,基体β相发生了动态再结晶。当变形温度小于270℃时,随着变形温度的升高,再结晶晶粒更为细小均匀。变形温度进一步升高,晶粒出现局部长大;当应变速率小于1s-1时,动态再结晶晶粒随应变速率的增大而减小;应变速率约为1s-1时,晶粒细小均匀;应变速率继续增加时,动态再结晶晶粒出现不均匀现象。  相似文献   

6.
目的 建立近β钛合金Ti−6Mo−5V−3Al−2Fe−2Zr(质量分数)的热变形本构方程,绘制热加工图,确定该合金的流变失稳区和适宜加工区,为其在工业生产中热加工工艺参数的制定提供指导。方法 在变形温度700~ 850 ℃、应变速率0.000 5~0.5 s−1、真应变0.7的条件下,对近β钛合金Ti−6Mo−5V−3Al−2Fe−2Zr进行热压缩实验;基于Arrhenius方程建立该合金的热变形本构方程,并对方程进行验证;根据Prasad失稳准则,构建该合金的热加工图。结果 该合金的流变应力随着变形温度的升高而减小,随着应变速率的增大而增大;其热变形激活能为226.29 kJ/mol,本构方程为;通过热变形本构方程得到的峰值应力计算值与实验值平均误差为4.21%。结论 建立的热变形本构方程预测了流变应力,描述了该合金的热变形行为;通过叠加合金的能量耗散图和流变失稳图,获得了该合金的热加工图。基于热加工图确定该合金的流变失稳区为变形温度700~755 ℃与784~850 ℃、应变速率0.5~0.05 s−1,最佳加工区为变形温度836~850 ℃、应变速率0.000 5~0.005 s−1。  相似文献   

7.
目的获得NF709钢的热变形工艺参数。方法利用Gleeble3800热模拟试验机,在变形温度为930~1230℃、应变速率为0.01~10 s~(-1)、真应变为1.0的条件下,得到真应力-真应变曲线。依据流变应力曲线和相关热加工理论,建立材料的本构方程,分析试验钢的热变形特点。结果该试验钢在试验条件下的热变形激活能为424 kJ/mol,建立了试验钢在变形条件下的本构方程,回归出了动态再结晶临界应力和Z参数之间的关系方程。根据动态组织分析和相应的热加工条件,建立了试验钢的动态组织状态图,可以用来预测不同变形条件下的动态组织。建立了应变速率、温度和峰值应力之间的关系方程。结论在给定的变形温度或应变速率下,应变速率或变形温度对微观组织有显著影响。在1030~1230℃、应变速率为10 s~(-1)的条件下,试验钢在变形量较小时容易失稳,随着应变量增加,流变失稳消失。  相似文献   

8.
对高硅镍铜合金NCu30-4-2-1进行了短时高温拉伸实验,研究了材料的强度和塑性随温度的变化规律.采用Gleeble-1500热模拟实验机对该合金铸态材料在不同变形温度和应变速率下进行了热压缩变形实验,研究了流变应力受温度和应变速率影响的变化规律,以及高温变形组织随温度和应变速率变化的规律.结合实际挤压实验,确定了合理的挤压温度和挤压速率范围.该合金的力学性能和挤压成材率得到了大幅度提高.  相似文献   

9.
在VDBF-250真空热压烧结炉中,采用真空热压烧结工艺制备了10%(体积分数)TiC/Cu-Al2O3复合材料。利用Gleeble-1500热力模拟实验机,在温度为450~850℃、应变速率为0.001~1s-1、真应变量0.7的条件下,对10%(体积分数)TiC/Cu-Al2O3复合材料高温塑性变形过程中的动态再结晶行为及其热加工图进行研究和分析。结果表明,该材料烧结态致密度为98.53%,显微硬度为158 HV,导电率为48.7%IACS;材料的高温流变应力-应变曲线主要以动态再结晶软化机制为特征,峰值应力随变形温度的降低或应变速率的升高而增加,属于温度和应变速率敏感材料;同时,利用10%(体积分数)TiC/Cu-Al2O3复合材料DMM加工图分析了其变形机制和失稳机制,并最终确定了热加工工艺参数选取范围为变形温度750~850℃,应变速率0.01~0.1s-1。  相似文献   

10.
通过Gleeble-3500热模拟试验机对11Cr12Ni3Mo2VN马氏体耐热钢进行等温热压缩实验,研究了其在变形温度T为900~1 050℃、应变速率■为0.001~10 s~(-1)条件下的热变形行为,确定了材料的热变形参数。通过对峰值应力的拟合建立了热变形本构方程,并对本构方程的准确性进行了验证,发现建立的本构方程能够准确预测材料在高温变形时的流变应力。根据■曲线求得材料的热变形表观激活能Q为450.988 kJ/mol。以动态材料模型和Murthy失稳判据为理论基础绘制了热加工图,结合应力-应变曲线,确定了11Cr12Ni3Mo2VN耐热钢的最佳加工工艺参数:加工温度为980~1 050℃,应变速率为0.1 s~(-1)或更小。还利用光镜研究了加工温度、应变速率等热变形参数对材料微观组织演变的影响。结果表明,热变形温度和应变速率都会影响11Cr12Ni3Mo2VN耐热钢的动态回复和动态再结晶机制。加工温度起决定性作用,在温度较低的条件下,材料的动态回复机制占主导;随着温度的升高,材料的软化机制以动态再结晶为主。应变速率对动态再结晶晶粒尺寸的影响较大,低应变速率有利于动态再结晶的充分进行,晶粒大小更加均匀,材料在热变形后的性能更加优异。  相似文献   

11.
2124铝合金的热压缩变形和加工图   总被引:1,自引:0,他引:1  
采用热模拟实验研究2124铝合金在应变速率为0.01~10s-1、变形温度为340~500℃条件下的流变应力行为。结果表明:2124铝合金热变形过程中的流变应力可用双曲正弦本构关系来描述,平均激活能为170.13kJ/mol。根据动态材料模型,计算并分析2124铝合金的加工图。利用加工图确定热变形的流变失稳区,并且获得了实验参数范围内的热变形过程的最佳工艺参数,其热加工温度为450℃左右,应变速率为0.01~0.1s-1。  相似文献   

12.
为确定Al-Cu-Mg-Ag合金的热加工工艺制度提供理论依据以及便捷的途径,基于动态材料模型(DMM)理论和Ziegler失稳判据,采用Al-Cu-Mg-Ag合金的热变形实验数据,建立了热变形加工图,并利用加工图理论分析了该合金在热变形过程中的变形行为.结果表明:Al-Cu-Mg-Ag合金热变形时有2个失稳区域,一是变...  相似文献   

13.
在变形温度为850~1150℃、应变速率为0.1~10s -1 的条件下,对Cr-Mo-B系机械工程用钢进行高温热压缩实验。基于真应力-应变曲线,建立输入参数为温度、变形速率、应变和输出参数为流变应力的人工神经网络(ANN)模型。结果表明:神经网络模型的预测精度高,其预测流变应力的均方根误差为1.3858。根据动态材料模型理论(DMM),构建并分析材料在真应变为0.5和0.7时的热加工图,确定了最佳热变形工艺参数:当真应变ε=0.5时,变形温度为1050~1150℃、应变速率为0.1~0.4s -1 区域的功率耗散因子η≥37.20%;当真应变ε=0.7时,变形温度为1000~1150℃、应变速率为0.1~0.6s -1 区域的功率耗散因子η≥35.80%。  相似文献   

14.
新型含铝奥氏体耐热合金(AFA)进行压缩热模拟试验,使用OM和EBSD等手段研究了这种合金在950~1150℃和0.01~5 s-1条件下的微观组织演变、建立了基于动态材料模型热加工图、分析了变形参数对合金加工性能的影响并按照不同区域组织变形的特征构建了合金的热变形机理图。结果表明:新型AFA合金的高温流变应力受到变形温度和应变速率的显著影响。在变形温度为950~1150℃和应变速率为0.18~10 s-1条件下,这种合金易发生流变失稳。在变形温度为1050~1120℃、应变速率0.01~0.1 s-1和变形温度1120~1150℃、应变速率10-0.5~10-1.5 s-1这两个区间,这种合金发生完全动态再结晶行为且其再结晶晶粒均匀细小,功率耗散因子η达到峰值45%。新型AFA合金的热加工艺,应该优先选择再结晶区域。  相似文献   

15.
The hot compression deformation behavior of Cu–6.0Ni–1.0Si–0.5Al–0.15?Mg–0.1Cr alloy with high strength, high stress relaxation resistance and good electrical conductivity was investigated using a Gleeble1500 thermal–mechanical simulator at temperatures ranging from 700 to 900?°C and strain rates ranging from 0.001?to 1?s?1. Working hardening, dynamic recovery and dynamic recrystallization play important roles to affect the plastic deformation behavior of the alloy. According to the stress–strain data, constitutive equation has been carried out and the hot compression deformation activation energy is 854.73?kJ/mol. Hot processing map was established on the basis of dynamic material model theories, and Prasad instability criterion indicates that the appropriate hot processing temperature range and strain rate range for hot deformation were 850~875?°C and 0.001~0.01?s?1, which agreed well with the hot rolling experimentation results.  相似文献   

16.
采用Gleeble-1500热模拟试验机对ZK60镁合金在变形温度为150~400℃,应变速率为0.001~10 s-1条件下的热变形行为进行研究,利用双曲正弦关系式描述了该合金在热变形过程中的稳态流变应力;根据合金动态模型,计算并分析了该合金的加工图.研究表明:利用加工图可确定出该合金热变形的流变失稳区,导致变形失稳的原因主要是孪生和局部流变;试验条件下热变形的最佳工艺参数为变形温度350℃,应变速率0.001 s-1,在该条件下合金发生完全再结晶,具有较好的塑性.  相似文献   

17.
The hot deformation behavior of Ti-15-3 titanium alloy was investigated by hot compression tests conducted in the temperature range 850–1150 °C and strain rate range 0.001–10 s−1. Using the flow stress data corrected for deformation heating, the activation energy map, processing maps and Zener–Hollomon parameter map were developed to determine the optimum hot-working parameters and to investigate the effects of strain rate and temperature on microstructural evolution of this material. The results show that the safe region for hot deformation occurs in the strain rate range 0.001–0.1 s−1 over the entire temperature range investigated. In this region, the activation energy is ~240 ± 5 kJ/mol and the ln Z values vary in range of 13.9–21 s−1. Stable flow is associated with dynamic recovery and dynamic recrystallization. Also, flow instabilities are observed in the form of localized slip bands and flow localization at strain rates higher than 0.1 s−1 over a wide temperature range. The corresponding ln Z values are larger than 21 s−1. The hot deformation characteristic of Ti-15-3 alloy predicted from the processing maps, activation energy map, and Zener–Hollomon parameter map agrees well with the results of microstructural observations.  相似文献   

18.
Hot compression tests were conducted on a Gleeble-1500 simulator to investigate the hot deformation behavior of BT20 Ti alloy (Ti-6Al-2Zr-1Mo-1V) in the temperature range from 550 to 1000℃ at constant strain rate in the range of 0.01~1 s-1, and then the optimum spinning temperature range was determined. Moreover, tube spinning experiments were executed to verify the reasonability of the optimum temperature range. The results show that the flow stress declines gradually with increasing deformation temperature and decreasing strain rate. In α β phase region the dynamic recrystallization is the main softening mechanism and in β phase region the hot deformation softening is controlled by dynamic recovery. In α βphase region with reducing strain rate dynamic recrystallization is fully developed. The optimum temperature of hot spinning is 850~900℃ and that of warm spinning is 600~650℃.Meanwhile, at the temperature above 600℃ tubular workpieces of BT20 Ti alloy have been spun without surface cracks and microstructure inhomogeneity, which proves that the optimum spinning temperature range obtained through hot compression experiments is reasonable.  相似文献   

19.
胡勇  陈威  李晓诚  彭和思  丁雨田 《材料导报》2017,31(16):144-149
通过Gleeble-1500热模拟机在500~600℃、应变速率0.01~10s~(-1)条件下的近等温热模拟压缩试验,建立合金本构方程和热加工图。结果表明:HMn62-3-3合金在热变形过程中发生动态再结晶行为,其峰值应力随变形温度的升高或应变速率的降低而降低;采用Arrhenius方程能够较好地拟合HMn62-3-3合金的流变行为,其热变形激活能为201.525kJ·mol~(-1);根据DMM模型,计算并建立了HMn62-3-3材料的热加工图,由此确定热变形过程中的最佳工艺参数为变形温度610~640℃,应变速率为2~10s~(-1)。  相似文献   

20.
The hot deformation behavior of a Ti-47Al-2Cr-2Nb-0.2W-0.15B(at.%) titanium aluminide alloy fabricated by pre-alloyed powder metallurgy has been investigated by using the hot compression tests in the temperature range from 950 C to 1300 C and at the strain rates between 10 3 s 1 and 10 s 1.The processing maps have been established to evaluate the optimum hot processing conditions and reveal the instability regions.It is found that the flow stress of the investigated alloy is a strong function of the temperature and the strain rate.The investigated alloy has the optimum hot-working condition at 950 C and 10 3 s 1,since the material undergoes dynamic recrystallization to produce a fine-grained microstructure.At 1250 C and 10 3 s 1,the alloy exhibits superplastic deformation.At 1300 C and 10 1 s 1,the cyclic dynamic recrystallization with high temperature grain coarsening takes place.The material undergoes flow instabilities at lower temperatures and higher strain rates,as predicted by the instability criterion.The processing maps demonstrate that the strain significantly affected the instability regions.The manifestations of the instabilities have been observed in the form of microvoids,wedge cracks,and surface fractures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号