首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Well-crystallized flower-like SrCO3:Tb3+ phosphors have been synthesized by an inexpensive and friendly solvothermal process using polyvinylpyrrolidone (PVP, K30) as an additive without further annealing treatment. X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), and field emission scanning electron microscopy (FESEM) as well as photoluminescence spectroscopy (PL) were used to characterize the resulting samples. The amount of PVP and the reaction time have strong effect on the morphology of the SrCO3:Tb3+ particles. The results of XRD confirm the formation of a well-crystallized SrCO3 phase with an orthorhombic structure. The possible formation mechanism for flower-like SrCO3:Tb3+ phosphor is proposed. The SrCO3:Tb3+ phosphors show the characteristic 5D47FJ (J = 6, 5, 4, 3) emission lines with green emission 5D47F5 (544 nm) as the most prominent group under ultraviolet excitation.  相似文献   

2.
In this work, two Tb3+ activated green phosphors: Y2O3:Tb3+ and YBO3:Tb3+ were prepared by hydrothermal method. Photoluminescence properties of both phosphors were studied in details. Both phosphors exhibit similar luminescent characteristics symbolized by the dominant green emission at 545 nm. Concentration quenching occurs at the Tb3+ concentration of 1.60 atomic% and 2.57 atomic% for Y2O3:Tb3+ and YBO3:Tb3+, respectively. Luminescence decay properties were characterized to better understand the mechanism of concentration quenching. Based on the calculation, the concentration quenching in both phosphors was caused by the dipole–dipole interaction between Tb3+ ions.  相似文献   

3.
Self-assembled 3D flower-like NaY(MoO4)2:Eu3+ microarchitectures were successfully synthesized by a glycine-assisted hydrothermal method at 180 °C. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM) were employed to characterize the as-obtained products. It was found that morphology modulation could be easily realized by changing the time of hydrothermal reaction system. 3D flower-like NaY(MoO4)2:Eu3+ microarchitectures were formed with 72 h reaction time. The formation mechanism for flower-like architecture was proposed on the basis of a series of time-dependent experiments. The NaY(MoO4)2:Eu3+ powders obtained can be effectively excited by 396 nm light, and exhibit strong red emission around 615 nm, attributed to the Eu3+5D→ 7F2 transition. An investigation on the photoluminescence (PL) properties of NaY(MoO4)2:Eu3+ obtained revealed that the luminescence properties were correlated with the morphology and size.  相似文献   

4.
One-dimensional (1D) Y2O3:Tb3+ and Gd2O3:Tb3+ microrods have been successfully prepared through a large-scale and facile hydrothermal method followed by a subsequent calcination process in N2/H2 mixed atmosphere. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (IR), thermogravimetric analysis (TGA), energy-dispersive X-ray spectra (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), photoluminescence (PL) and cathodoluminescence (CL) spectra as well as kinetic decays were used to characterize the samples. The as-formed products via the hydrothermal process could transform to cubic Y2O3:Tb3+ and Gd2O3:Tb3+ with the same morphology and slight shrinking in size after a postannealing process. Both Y2O3:Tb3+ and Gd2O3:Tb3+ microrods exhibit strong green emission corresponding to 5D4 → 7F5 transition (542 nm) of Tb3+ under UV light excitation (307 and 258 nm, respectively), and low-voltage electron beam excitation (1.5 → 3.5 kV), which have potential applications in fluorescent lamps and field emission displays.  相似文献   

5.
In this study, the photochromic MoO3 powder with novel morphology has been synthesized via hydrothermal method, using ethylene diamine tetraacetice acid (EDTA) as organic inducing agent. The influence of EDTA on the morphology, structure and photochromic properties of MoO3 powder has been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), as well as ultraviolet and visible spectroscopy (UV-vis) and color difference meter. When the molar ratio of EDTA/Mo6+ is 0.05:1, the EDTA-induced MoO3 powder is found to have 3D flower-like morphologies and excellent photochromic properties. Furthermore, the possible growth mechanism of the flower-like structure and the photochromic mechanism of MoO3 powder are also discussed in detail.  相似文献   

6.
Water-soluble lanthanide-doped YF3 nanocrystals with cubic structure were successfully synthesized for the first time using a simple solvothermal method with ethanol as solvent at 160 °C for 12 h. SEM and TEM results demonstrated that the obtained nanocrystals have an irregular shape and an average size of below 30 nm. Tb3+, Tb3+/Ce3+ co-doped YF3 nanocrystals were also prepared and their photoluminescence properties were investigated. The luminescent intensity of the Tb3+ for the Tb3+/Ce3+ co-doped YF3 nanocrystals is about ten times higher than that of the Tb3+ doped YF3 nanocrystals. The products were characterized by XRD, SEM and TEM. Owing to their water-soluble properties and high processability, extensive applications may be found.  相似文献   

7.
Through a citric acid assisted hydrothermal method, the RE3+ (RE3+ = Ce3+, Tb3+) doped cubic phase BaGdF5 nanocrystals with a sphere-like morphology and an average size of 30 nm have been synthesized. The samples show paramagnetic properties at 300 K. The photoluminescence spectra of the obtained samples suggest that the existence of Ce3+ can dramatically enhance the emission intensity of Tb3+ due to an efficient energy transfer from Ce3+ to Tb3+. The energy transfer efficiency from Ce3+ to Tb3+, the critical energy transfer distance between Ce3+ and Tb3+, and the energy transfer mechanism of Ce3+–Tb3+ are discussed based on the experimental data and the theoretical analysis.  相似文献   

8.
A series of Tb3+ doped CeF3 and NaCeF4 nanoparticles with different morphology and dimension were synthesized via hydrothermal method. Different organic additives, including sodium dodecyl sulfonate (SDS), polyvinylpyrrolidone (PVP), cetyltrimethyl ammonium bromide (CTAB), oleic acid (OA), polyethylene glycol (PEG), trisodium citrate (Cit) were introduced to control the crystallite size and morphology. Powder X-ray diffraction (PXRD), fourier transform infra-red spectra (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and down-conversion (DC) photoluminescence spectra were used to characterize the samples. The emission peaks of all the prepared samples centered at 490, 545, 585 and 621 nm which can be ascribed to the 5D47FJ (J?=?6, 5, 4, 3) transitions respectively of Tb3+ ion. However, emission intensities are strongly controlled by morphology and particle sizes which are influenced by different organic additives used in synthesis. Moreover, the crystal growth process was monitored through a series of time-dependent experiments and a possible formation mechanism has been proposed.  相似文献   

9.
Flower-like Y2O3:Eu3+ microspheres with strong red photoluminescent emission were successfully synthesized through a controlled solvothermal approach followed by a subsequent heat treatment. The experimental results showed that the flower-like microspheres were composed of nanopetals with the thickness of about 50 nm, and the solvent properties as well as the characteristics of the reactants were very crucial for the morphology-controlled process. Meanwhile, the formation mechanism study revealed a possible assembly and etching process. In addition, their photoluminescence property investigation indicated that the flower-like products exhibited the strongest red emission corresponding to 5D0  7F2 transition (609 nm) among the synthesized samples, implying better photoluminescence property provided by the assembled spheres with higher crystallinity and better size-distribution and suggesting their potential application in optoelectronics.  相似文献   

10.
《Materials Research Bulletin》2013,48(11):4749-4753
A series of single-phased emission tunable NaBa4(BO3)3:Ce3+, Tb3+ phosphors were synthesized by solid-state reaction. The crystal structure, photoluminescence properties, concentration quenching and energy transfer of NaBa4(BO3)3:Ce3+, Tb3+ were systematically investigated. The wavelength-tunable bluish-green light can be realized by coupling the emission bands centered at 425 and 543 nm ascribed to the contribution from Ce3+ and Tb3+, respectively. The energy transfer from Ce3+ to Tb3+ in NaBa4(BO3)3 host was studied and demonstrated to be a resonant type via a dipole–dipole interaction mechanism. The energy transfer efficiency (Ce3+  Tb3+) obtained by decay curves was consistent with the result calculated by the emission intensity, which gradually increased from 0% to 84.5% by increasing the Tb3+ doping content from 0 to 0.45. The results indicate that the NaBa4(BO3)3:Ce3+, Tb3+ phosphors have potential applications as an ultraviolet-convertible phosphor due to its effective excitation in the ultraviolet rang.  相似文献   

11.
A significant practical application for nanostructured materials is X-ray medical imagery, because it is necessary to use dense materials in order to enable absorption of high energy photons. An important requirement of these materials is UV-vis range emission produced by X-ray excitation, which can be influenced by the particle size. Europium doped gadolinium oxide is a well known red phosphor. Moreover, nanophosphors of Gd2O3 codoped with Tb3+, Eu3+ increase their light yield by energy transfer between Tb3+ and Eu3+. In this study, Gd2O3 nanopowders codoped with Eu3+ and Tb3+ (2.5 at.% Eu3+, and 0.005 and 0.01 at.% Tb3+) were obtained via a sol-gel process using gadolinium pentanedionate as precursor and europium and terbium nitrates as doping sources. In this paper, we report the influence of annealing temperature on the structure, morphology and luminescent properties of Gd2O3:Eu3+, Tb3+ by means of TGA, XRD, TEM and X-ray emission measurements.  相似文献   

12.
LaPO4:Ce3+,Tb3+ (LAP) nanorods were prepared by hydrothermal method, and LaPO4:Ce3+,Tb3+@LaPO4 core/shell nanostructures were formed by hydrothermal growth of LaPO4 nanocoating onto the LAP nanorods. Oxidation behavior of the LAP nanorods and core/shell nanostructures was systematically presented by investigating change of their photoluminescence intensities with different durations of exposure to air at different temperatures. The results revealed that the LAP nanorods had severe loss of photoluminescence due to the oxidation of Ce3+ and Tb3+ to their respective tetravalent ions. In contrast, the photoluminescence properties of the core/shell nanostructures are more stable than those of the LAP nanorods with regard to thermal stress under aerobic conditions due to the surface protection from the LaPO4 nanocoating. Therefore, formation of core/shell nanostructure may be a alternative route for photoluminescence stable LAP nanophosphors.  相似文献   

13.
Spherical MWO4:Tb3+ (M = Ca, Sr, Ba) particles were synthesized by a hydrothermal route at 180 °C for 10 h. The synthesized MWO4:Tb3+ particles were characterized by X-ray powder diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and luminescence spectroscopy. The XRD and FT-IR results show that MWO4:Tb3+ particles with a scheelite-type crystal structure were synthesized successfully. The SEM and TEM results show that uniform spherical particles in the range of hundreds of nanometers were obtained. The possible growth mechanism may be attributed to a typical Ostwald ripening process. The excitation spectra of MWO4:Tb3+ phosphors show a strong absorption band of the WO4 2? group and some weak absorption bands of Tb3+ ions. The emission spectra of MWO4:Tb3+ phosphors show the characteristic emission bands of Tb3+ ions. CaWO4:Tb3+ sample has the highest excitation and emission intensity.  相似文献   

14.
《Materials Research Bulletin》2006,41(8):1571-1577
Y1−xBO3:xTb3+ phosphors were first synthesized by hydrothermal reaction, and the samples were characterized by X-ray powder diffractometry, infrared absorption, nuclear magnetic resonance, scanning electron microscopy and photoluminescence. The results show that single phase is obtained with Tb concentration up to 0.28 and all the samples exhibit flake-like morphology. The sample was determined to be vaterite-type orthoborate and the boron is both four-coordinated (chief) and three-coordinated (few). The Y1−xBO3:xTb3+ phosphors showed intense green emission at 550 nm and the intensity of the emission increases with Tb3+ substitution up to 0.22 and then decreases for higher Tb3+ content. In the phosphors prepared by the hydrothermal method the concentration quenching is higher than in the phosphors prepared by solid-state reaction; the intensity of emission is stronger in the former than that of the latter. Y1−xBO3:xTb3+ is a promising phosphor for plasma display panels and hydrargyrum-free lamps.  相似文献   

15.
YF3:Tb3+ hollow nanofibers were successfully fabricated via fluorination of the relevant Y2O3:Tb3+ hollow nanofibers which were obtained by calcining the electrospun PVP/[Y(NO3)3 + Tb(NO3)3] composite nanofibers. The morphology and properties of the products were investigated in detail by X-ray diffraction, scanning electron microscope, transmission electron microscope, and fluorescence spectrometer. YF3:Tb3+ hollow nanofibers were pure orthorhombic phase with space group Pnma and were hollow-centered structure with the mean diameter of 148 ± 23 nm. Fluorescence emission peaks of Tb3+ in the YF3:Tb3+ hollow nanofibers were observed and assigned to the energy levels transitions of 5D4 → 7FJ (J = 6, 5, 4, 3) (490, 543, 588, and 620 nm) of Tb3+ ions, and the 5D4 → 7F5 hypersensitive transition at 543 nm was the dominant emission peak. Moreover, the emitting colors of YF3:Tb3+ hollow nanofibers were located in the green region in CIE chromaticity coordinates diagram. The luminescent intensity of YF3:Tb3+ hollow nanofibers was increased remarkably with the increasing doping concentration of Tb3+ ions and reached a maximum at 7 mol% of Tb3+. The possible formation mechanism of YF3:Tb3+ hollow nanofibers was also discussed. This preparation technique could be applied to prepare other rare earth fluoride hollow nanofibers.  相似文献   

16.
Eu3+- and Tb3+-activated SrGdGa3O7 phosphors were synthesized by the solid-state reaction and their luminescence properties were investigated. Sr(Gd1 − xEux)Ga3O7 and Sr(Gd1 − xTbx)Ga3O7 formed continuous solid solution in the range of x = 0-1.0. Unactivated SrGdGa3O7 exhibited a typical characteristic excitation and emission of Gd ion. The SrGdGa3O7:xEu3+ and SrGdGa3O7:xTb3+ phosphors also showed the well-known Eu3+ and Tb3+ excitation and emission. The energy transfer from Gd3+ to Eu3+ and Tb3+ were verified by photoluminescence spectra. The dependence of photoluminescence intensity on Eu3+ and Tb3+ concentration were also studied in detail and the photoluminescence (PL) intensity of SrGdGa3O7:Eu and SrGdGa3O7:Tb were compared with commercial phosphors, Y2O3:Eu and LaPO4:Ce,Tb. The luminescence decay measurements showed that the lifetimes of Eu3+ and Tb3+ were in the range of microsecond. The energy transfer from Gd3+ to Tb3+ was also observed in decay curve.  相似文献   

17.
Phase pure Ce3+ and Tb3+ singly doped and Ce3+/Tb3+ co-doped Ba3GdNa(PO4)3F samples have been synthesized via the high temperature solid-state reaction. The crystal structures, photoluminescence properties, fluorescence lifetimes, thermal properties and energy transfer of Ba3GdNa(PO4)3F:Ce3+,Tb3+ were systematically investigated. Rietveld structure refinement indicates that Ba3GdNa(PO4)3F crystallizes in a hexagonal crystal system with the space group P-6. For the co-doped Ba3GdNa(PO4)3F:Ce3+,Tb3+ samples, the emission color can be tuned from blue to green by varying the doping concentration of the Tb3+ ions. The intense green emission was realized in the Ba3GdNa(PO4)3F:Ce3+,Tb3+ phosphors on the basis of the highly efficient energy transfer from Ce3+ to Tb3+. Also the energy transfer mechanism has been confirmed to be quadrupole–quadrupole interaction, which can be validated via the agreement of critical distances obtained from the concentration quenching (13.84 Å). These results show that the developed phosphors may possess potential applications in near-ultraviolet pumped white light-emitting diodes.  相似文献   

18.
Different concentrations of Li-doped YBO3:Eu3+ phosphors have been prepared by the conventional solid state reaction method and were characterized by X-ray diffraction, field emission scanning electron microscopy, photoluminescence excitation and emission measurements. An intense reddish orange emission is observed under UV excitation and the emitted radiation was dominated by an orange peak at 594 nm resulted from the 5D0 → 7F1 transitions of Eu3+ ions. The brightness of the YBO3:Eu3+ phosphor was found greatly improved with Li-doping accompanied by slight improvement in the purity of the color which might be attributed to improvement in crystallinity, grain sizes and creation of oxygen vacancies with Li-doping. The observed results have been discussed in comparison with similar reported works.  相似文献   

19.
This paper presents hydrothermal synthesis, characterization, and photoluminescence (PL) properties of novel green-emitting phosphors, Gd2Zr2O7:Tb3+. Their crystal structure, morphology and photoluminescence properties were investigated by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Transmission electron microscopy (TEM) and fluorescence spectrophotometer. The results revealed that one-dimensional Gd2Zr2O7:Tb3+ nanorods with diameter of about 30 nm and length of 150-300 nm were formed, and the products exhibited a fluorite-type structure. PL study revealed that Gd2Zr2O7:Tb3+ phosphors presented dominant green emission luminescence, which was attributed to the transitions from 5D4 excited states to 7FJ (J = 3-6) ground states of Tb3+. The luminescence intensity of Gd2Zr2O7:Tb3+ with different Tb3+ concentration was also investigated and reported, and an obvious concentration quenching was observed when Tb3+ ion concentration was 5 at.%.  相似文献   

20.
YBO3:Ce3+ blue-emitting phosphors were prepared from boric acid and nitrates of yttrium and cerium(III) by hydrothermal method. An excess amount of boric acid, prolonged aging, high temperature, and a high pH value promote the formation of crystalline YBO3. The higher crystallinity results in the higher photoluminescence (PL) intensity corresponding to the 5d-4f transition of Ce3+ under the irradiation of near-UV light. The PL intensity also depends on the pH value of precursor suspension and the nominal Ce3+ concentration, where the sample prepared at pH = 8 and Ce/(Y + Ce) = 0.25-0.5 at% shows the maximum PL intensity. In addition, the hydrothermally prepared sample shows the characteristic photobleaching behavior under the continuous irradiation of near-UV light. These results suggest that the crystallinity of the host YBO3 crystal and the homogeneity of substituted Ce3+ ions play significant roles in the PL properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号