首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
A heterogeneous catalytic process involves many surface elementary steps that affect the overall catalytic performance in one way or another. In general, a high‐performance heterogeneous catalyst should meet the main criteria: excellent catalytic activity and high selectivity toward target products. Using surface science techniques, the two‐sidedness of the surface reaction mediations can be explored, from the perspectives of the surface and the molecule manipulations. The surface manipulation refers to a reaction that is mediated by composition and structure of the substrate as well as surface species, while the molecular manipulation relates to a reaction that is mediated by the reacting molecule via the precursor selection, environmental control, or external excitation. The best catalytic system should consist of the most efficient catalyst and the best suitable reacting molecule, in addition to its economic benefit and environmental amity. Recent research progress in surface reaction mediation is outlined, and its two‐sidedness is governed by the Arrhenius equation. This should shed new light on the connection between basic theory and surface reaction mediation strategies. To conclude, challenges and possible opportunities are elaborated for efficient surface reaction mediations.  相似文献   

9.
The surface wettability, such as superhydrophobic properties, of nanofibrous structures is highly depending on their size, length, spacing or orientation to the surface. Finding a way to control all these characteristics is extremely important in a theoretical point of view and for various applications. Here, we report the possible tuning of all these characteristics by adjusting the length (n) of the alkyl chains of electrodeposited poly(3,3‐dialkyl‐3,4‐propylenedioxythiophene), which allows the formation of horizontally or vertically oriented nanofibers of various dimensions and spacings. Here, we play especially on the hydrophilic/hydrophobic characteristics of the polymer to change the growth of a polymer on a substrate and the distance between the polymer backbones. For example, a change in the fiber orientation from horizontal to vertical is observed for n = 2. For n < 2, the polymer fibers are mainly horizontally aligned while for n > 2, the polymer fibers are vertically aligned.  相似文献   

10.
11.
12.
Shell‐isolated nanoparticle‐enhanced Raman spectroscopy (SHINERS), due to its versatility, has been able to break the long‐term limitations of the material‐ and substrate‐specific generalities in the traditional field of surface‐enhanced Raman spectroscopy. With a shell‐isolated work principle, this method provides an opportunity to investigate successfully in surface, biological systems, energetic materials, and environmental sciences. Both the shell material and core morphology are being improved continuously to meet the requirements in diverse systems, such as the electrochemical studies at single crystal electrode surfaces, in situ monitoring of photoinduced reaction processes, practical applications in energy conversion and storage, inspections in food safety, and the surface‐enhanced fluorescence. Predictably, the concept of shell‐isolated nanoparticle‐enhancement could be expanded to the wider range for the performance of plasmon‐enhanced spectral modifications.  相似文献   

13.
14.
15.
Perovskite light‐emitting diodes (PeLEDs) have attracted considerable attention because of their potential in display and lighting applications. To promote commercialization of PeLEDs, it is important to improve the external quantum efficiency of the devices, which depends on their internal quantum efficiency (IQE) and light extraction efficiency. Optical simulations have revealed that 20–50% of the light generated in the device will be lost to surface plasmon (SP) modes formed in the metal/dielectric interfaces. Therefore, extracting the optical energy in SP modes to the air will greatly increase the light extraction efficiency of PeLEDs. In addition, the SPs can accelerate radiative recombination of the emitter via near‐field effects. Thus, the IQE of a PeLED can also be enhanced by SP manipulation. In this review, first, general concepts of the SPs and how they can enhance the efficiency of LEDs are introduced. Then recent progresses in SP‐enhanced emission of perovskite films and LEDs are systematically reviewed. After that, the challenges and opportunities of the SP‐enhanced PeLEDs are shown, followed by an outlook of further development of the SPs in perovskite optoelectronic devices.  相似文献   

16.
17.
18.
Controlled modification of surfaces is one of the key pursuits of the nanoscience and nanotechnology fields, allowing for the fabrication of bespoke materials with targeted functionalities. However, many surface modifications currently require painstakingly precise and/or energy intensive processing to implement, and are thus limited in scope and scale. Here, a concept which can enhance the capacity for control of surfaces is introduced: plasma‐assisted nucleation and self‐assembly at atomic to nanoscales, scalable at atmospheric pressures.  相似文献   

19.
Many of the most advanced applications of semiconductor quantum dots (QDs) in quantum information technology require a fine control of the QDs' position and confinement potential, which cannot be achieved with conventional growth techniques. Here, a novel and versatile approach for the fabrication of site‐controlled QDs is presented. Hydrogen incorporation in GaAsN results in the formation of N–2H and N–2H–H complexes, which neutralize all the effects of N on GaAs, including the N‐induced large reduction of the bandgap energy. Starting from a fully hydrogenated GaAs/GaAsN:H/GaAs quantum well, the N? H bonds located within the light spot generated by a scanning near‐field optical microscope tip are broken, thus obtaining site‐controlled GaAsN QDs surrounded by a barrier of GaAsN:H (laterally) and GaAs (above and below). By adjusting the laser power density and exposure time, the optical properties of the QDs can be finely controlled and optimized, tuning the quantum confinement energy over more than 100 meV and resulting in the observation of single‐photon emission from both the exciton and biexciton recombinations. This novel fabrication technique reaches a position accuracy <100 nm and it can easily be applied to the realization of more complex nanostructures.  相似文献   

20.
The micro‐supercapacitors are of great value for portable, flexible, and integrated electronic equipments. Here, the large‐scale and integrated asymmetrical micro‐supercapacitor (AMSC) array is fabricated in virtue of the laser direct writing and electrodeposition technology. The AMSC shows the ideal flexibility, high areal specific capacitance (21.8 mF cm?2), and good rate capability. Moreover, its energy density reaches 12.16 µW h cm?2, outperforming most micro‐supercapacitors reported previously. Meanwhile, large‐scale series‐connected AMSCs are integrated on the flexible substrates (e.g., indium tin oxide‐polyethylene terephthalate film), which can power a veriety of the commercial electronics. The combination of AMSCs array, solar cell, and electronic device proves the feasibility for practical application in the portable, flexible, and integrated electronic equipments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号