首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, performance of calcium phosphate formation of CaTiO3 coating film on Ti in Hanks’ balanced saline solution (HBSS) was investigated. CaTiO3 thin films with a thickness of 50 nm were deposited on Ti using radiofrequency (RF) magnetron sputtering. The temperature of Ti substrate was adjusted to room temperature (RT) and 873 K. Thereafter, the specimens deposited at RT were annealed at 873 K in air for 7.2 ks. The films were characterized by grazing incident angle X-ray diffractometry (GI-XRD) and X-ray photoelectron spectroscopy (XPS). After immersion in HBSS for 60 d, on CaTiO3 coated Ti, the formation of hydroxyapatite (HAP) was observed. Furthermore, HAP layer formed was thicker on the specimen on which CaTiO3 film was deposited at RT and annealed than that prepared at 873 K. The major difference between both specimens was the chemical properties of the outermost surface. In summary, CaTiO3 thin film deposited at RT and followed by annealing at 873 K for 7.2 ks in air enhances calcium phosphate formation ability on Ti.  相似文献   

2.
The chemical–hydrothermal combined synthesis of TiO2 and CaTiO3 films on pure Ti substrates was examined with a focus on crystallinity and surface morphology of the films. Pure Ti disks were chemically treated with H2O2/HNO3 solutions at 353 K for 5–60 min in order to introduce a TiO2 layer with low crystallinity on the surface. The samples were then hydrothermally treated in an autoclave at 453 K for 12 h. Anatase-type TiO2 and perovskite-type CaTiO3 films with high crystallinity were obtained upon treatment with distilled water and an aqueous solution of Ca(OH)2, respectively. Cracks in the TiO2 precursor films disappeared after hydrothermal treatment. Uniform and crack-free films could be obtained by the present process. In addition, in vitro formation of hydroxyapatite (HAp) on the films was investigated. Obtained samples were immersed in SBF (Simulated Body Fluid), adjusted to 310 K. A light HAp precipitate could be observed on non-surface modified Ti after 6 days of immersion. In contrast, precipitate formed after only 2 days on the present oxide films. The present surface modification was confirmed to drastically promote deposition of HAp on the surface of Ti.  相似文献   

3.
Surface modifications by thermal and hydrothermal treatments in solution with calcium ions were investigated with the aim of improving bioactivity and wear resistance of a Ti–Nb–Zr–Sn alloy. The results showed that the first step of thermal treatment at 600 °C significantly increases the surface hardness and energy by forming oxides of Ti and Nb. The second step of hydrothermal treatment in a boiled supersaturated Ca(OH)2 solution induces a bioactive layer containing CaTiO3, CaCO3, Ca(OH)2 and TiO2. Using this treatment, a complete Ca–P layer can be formed within 3 days of soaking in simulated body fluid (SBF). The origin of such fast apatite formation was analyzed by comparison with single step thermal or hydrothermal treatment and with thermal plus hydrothermal treatment without calcium ions. The results suggest that the increase of surface energy by thermal treatment and the incorporation of calcium ions by the hydrothermal treatment in calcium ion solution play important roles in the formation of bioactive apatite.  相似文献   

4.
5.
The oxynitridation of biomedical titanium metal under a precisely regulated oxygen partial pressure (PO2) of 10? 14 Pa in nitrogen atmosphere at 973 K for 1 h strongly enhanced apatite formation compared with that on Ti heated in air. The factors governing the high apatite-forming ability are discussed from the viewpoint of the surface properties of Ti heated under a PO2 of 10? 14 Pa in nitrogen atmosphere determined from X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and zeta potential measurements. Nitrogen (N)-doped TiO2 (interstitial N) was formed on pure Ti heated under a PO2 of 10? 14 Pa in nitrogen atmosphere at 973 K. The XPS O1s main peak shifted toward a lower binding energy upon heating under a PO2 of 10? 14 Pa. This shift may be due to the formation of oxygen vacancies. This Ti surface had a positive zeta potential of approximately 20 mV. According to time-of-flight secondary ion mass spectroscopy results, PO43 ? ions were predominantly adsorbed on Ti soaked in simulated body fluid (SBF) after heat treatment, followed by calcium ions. It was concluded that the apatite formation kinetics can be described using the Avrami–Erofeev equation with an Avrami index of n = 2, which implies the instantaneous nucleation of apatite on the surface of Ti soaked in SBF after heat treatment at 973 K under a PO2 of 10? 14 Pa.  相似文献   

6.
In this paper, calcium copper titanate (Ca1−xCux)TiO3 microcrystals with (x = 0, 0.01 and 0.02) were synthesized by the microwave–hydrothermal method at 140 °C for 30 min. These crystals were analyzed by X-ray diffraction (XRD), Rietveld refinement, X-ray absorption near-edge structure spectroscopy (XANES), micro-Raman spectroscopy, field emission scanning electron microscopy (FE-SEM). Its optical properties were investigated by ultraviolet–visible (UV–vis) absorption and photoluminescence (PL) measurements. XRD patterns, Rietveld refinement and micro-Raman spectroscopy indicated that these crystals present a perovskite-type orthorhombic structure. The Rietveld refinement data, micro-Raman and XANES spectra suggested that the substitution of Ca by Cu in A-site promoted a displacement of Ti atoms to off-center symmetric, which leads distortions on the cuboctahedral [CaO12] clusters neighboring and consequently promotes a strain into the CaTiO3 lattice. FE-SEM images showed that these cube-like microcrystals have an irregular shape due to Ostwald-ripening and self-assembly of plates and cubes in growth process. The defects and distortions into lattice at medium- and short-range on the [CaO12]/[TiO6] clusters promotes the structural order–disorder responsible by the intense PL properties of these microcrystals. The microcrystals are promising candidates for future applications in optical devices.  相似文献   

7.
Microwave irradiation has been proven to be an effective heating source in synthetic chemistry, and can accelerate the reaction rate, provide more uniform heating and help in developing better synthetic routes for the fabrication of bone-grafting implant materials. In this study, a new technique, which comprises microwave heating and powder metallurgy for in situ synthesis of Ti/CaP composites by using Ti powders, calcium carbonate (CaCO3) powders and dicalcium phosphate dihydrate (CaHPO4·2H2O) powders, has been developed. Three different compositions of Ti:CaCO3:CaHPO4·2H2O powdered mixture were employed to investigate the effect of the starting atomic ratio of the CaCO3 to CaHPO4·2H2O on the phase, microstructural formation and compressive properties of the microwave synthesized composites. When the starting atomic ratio reaches 1.67, composites containing mainly alpha-titanium (α-Ti), hydroxyapatite (HA), beta-tricalcium phosphate (β-TCP) and calcium titanate (CaTiO3) with porosity of 26%, pore size up to 152 μm, compressive strength of 212 MPa and compressive modulus of 12 GPa were formed. The in vitro apatite-forming capability of the composite was evaluated by immersing the composite into a simulated body fluid (SBF) for up to 14 days. The results showed that biodissolution occurred, followed by apatite precipitation after immersion in the SBF, suggesting that the composites are suitable for bone implant applications as apatite is an essential intermediate layer for bone cells attachment. The quantity and size of the apatite globules increased over the immersion time. After 14 days of immersion, the composite surface was fully covered by an apatite layer with a Ca/P atomic ratio approximately of 1.68, which is similar to the bone-like apatite appearing in human hard tissue. The results suggested that the microwave assisted-in situ synthesis technique can be used as an alternative to traditional powder metallurgy for the fabrication of Ti/CaP biocomposites.  相似文献   

8.
Bioactive glasses are an important subclass of biomaterials. The bioactivity of a glass depends on its initial constituents and their respective amounts. In the present investigation, five barium-zinc-borosilicate glass samples have been studied by varying Al2O3 mol% to check their bioactivity. The optical and bioactive properties of pristine glasses are compared with glasses soaked in Simulated Body Fluid (SBF) for 10 and 30 days using pH measurement, Ultraviolet–visible-Near Infrared-red (UV–vis–NIR), Fourier Transform Infra-Red (FTIR) spectroscopy, X-ray diffraction and Scanning Electron Microscopy (SEM) techniques. Although calcium is not present as an initial constituent in glass composition, yet bioactivity is observed in some glass samples after dipping them in SBF.  相似文献   

9.
Growth of calcium phosphate on surface-modified cotton   总被引:3,自引:0,他引:3  
A study of the growth of amorphous calcium phosphate on surface-modified cotton fibres by a combination of scanning electron microscopy/electron diffraction X-ray analysis, micro-FTIR and X-ray photoelectron spectroscopy is reported. Cotton fibres phosphorylated by the urea/phosphorous acid method and then soaked in saturated Ca(OH)2 for approximately one week were found to stimulate the growth of a calcium phosphate coating on their surfaces after soaking in 1.5×SBF for as little as 1 day. Ca(OH)2 soaking of the fibres is found to produce highly crystalline clusters lodged in the fibres which were confirmed by micro-FTIR to be calcium phosphite monohydrate (CaHPO3·H2O). In contrast, phosphorylated fibres not subjected to the Ca(OH)2 treatment did not exhibit calcium phosphate growth upon immersion in 1.5×SBF solution. Soaking of the Ca(OH)2-treated fibres with time in the 1.5×SBF solution produced progressively thicker layers of calcium phosphate on the fibres as confirmed by scanning electron microscopy and X-ray photoelectron spectroscopy. In general, calcium phosphate coatings formed over 1 1–5 day period soaking in 1.5×SBF solution appeared to consist of agglomerations of a large number of small spherical particles, while coatings formed after 17 days of soaking were distinctly chunky, thick and non-uniform in appearance. Micro-FTIR indicated that CaHPO3·H2O clusters were still present in cotton samples even after 4 days of soaking, while after 17 days, only the infrared spectrum typical of calcium phosphate was observed. EDX-measured Ca:P ratios of the coatings, although variable, suggested amorphous calcium phosphate. The mechanism of formation of the coating is believed to involve dissolution of the CaHPO3.H2O clusters upon introduction of the Ca(OH)2-treated phosphorylated cotton into the 1.5×SBF solution which elevates the Ca2+ ion concentration in the vicinity of the fibres so stimulating calcium phosphate formation. It is postulated that phosphite groups chemically bound to the cotton fibre surface or a calcium phosphite coating on the fibres act as nucleation sites for calcium phosphate growth in 1.5×SBF solution.  相似文献   

10.
A textured calcium phosphate based bio-ceramic coating was synthesized by continuous wave Nd:YAG laser induced direct melting of hydroxyapatite precursor on Ti–6Al–4V substrate. Two different micro-textured patterns (100 μm and 200 μm line spacing) of Ca–P based phases were fabricated by this technique to understand the alignment and focal adhesion of the bone forming cells on these surfaces. X-ray diffraction studies of the coated samples indicated the presence of CaTiO3, α-Ca3(PO4)2, Ca(OH)2, TiO2 (anatase) and TiO2 (rutile) phases as a result of the intermixing between the precursor and substrate material during laser processing. A two dimensional elemental mapping of the cross-section of the coated samples exhibited the presence of higher phosphorous concentration within the coating and a thin layer of calcium concentration only at the top of the coating. Improved in vitro bioactivity and in vitro biocompatibility was observed for the laser processed samples as compared to the control.  相似文献   

11.
A titania containing calcium and phosphate with rough and porous structure was prepared by microarc oxidation. The in vitro bioactivity was examined by immersing the samples into the simulated body fluid (SBF). And the mechanism was also discussed. The results show that only 3 days of immersion in SBF, apatite was formed on the surface, and after 6 days, nearly all the surface covered by apatite. This indicates that the layer can induce the formation of apatite in simulated body fluid. It is analyzed that the key factors of the apatite formation are the hydrolysis of the CaTiO3 and special structure.  相似文献   

12.
Potassium fluorrichterite (KNaCaMg5Si8O22F2) glass-ceramics were modified by either increasing the concentration of calcium (GC5) or by the addition of P2O5 (GP2). The stoichiometric composition (GST), GC5 and GP2 were soaked in simulated body fluid (SBF) along with 45S5-type bioglass as a control. After immersion, surface analyses were performed using thin-film X-ray diffraction (TF-XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and Fourier-transform infrared (reflection) spectroscopy (FT-IR). All compositions showed the formation of a calcium phosphate rich surface layer in SBF; GST, GP2 and the bioglass control within 7 days of immersion and GC5 after 14 days. It was concluded that all compositions were likely to be osteoconductive in vivo, with GP2 providing the best performance in terms of the combination of rapid formation of the surface layer and superior mechanical properties. This glass-ceramic system has potential as a load bearing bioceramic for fabrication of medical devices intended for skeletal tissue repair.  相似文献   

13.
The objective of this work was to fabricate a suitable porous Ti–10Mo alloy as the human bone replacement implants. The porous Ti–10Mo alloy was fabricated by mechanical alloying and then consolidated by powder metallurgy technique. NH4HCO3 powder was used as space-holder. It was indicated that the mean pore size, porosity, compressive strength, and elastic modulus of porous Ti–10Mo alloy could be tailored by the amount of NH4HCO3, and then could be matched with those of human bones. Furthermore, porous Ti–10Mo alloy was treated by alkali heat treatment and soaked in the 1.5 times simulated body fluid (1.5SBF). It was observed that the surface and the inside pore wall of porous Ti–10Mo alloy with 25 wt.% NH4HCO3 covered with the apatite layer after soaked in 1.5SBF for 28 days. These phenomena indicated that the surface modified porous Ti–10Mo alloy exhibited a high potential for bone-bonding, which was expected to be used as bone tissue implant.  相似文献   

14.
This study investigated the hydroxyapatite (HA) coating on metal implants in order to enhance their bioactive properties. In this study, HA coatings were formed on the surfaces of commercially pure titanium (c.p. Ti) and Ti–7.5Mo which were acid-etched and subsequently alkali-treated before samples were soaked in simulated body fluid (SBF). Specimens of c.p. Ti and Ti–7.5Mo were etched in either H3PO4 or HCl, and subsequently treated in NaOH. The surfaces of acid-etched c.p. Ti showed a porous structure, whereas those of acid-etched Ti–7.5Mo showed some grinding marks, but no porosity. After subsequent alkali treatment in NaOH, the surfaces of both the c.p. Ti and Ti–7.5Mo substrates exhibited microporous network structures. The specimens were then immersed in SBF at 37 °C for 28 days. Apatite began to deposit on acid-etched and NaOH-treated Ti–7.5Mo within 1 day after immersion in the SBF. After 28 days of immersion in the SBF, a dense and uniform layer was produced on the surfaces of all samples. The HA formation rate was the highest for HCl and NaOH-pretreated samples, and the results of EDS and XRD showed that much more intensive peaks of HA appear on the specimens of HCl and NaOH-treated Ti–7.5Mo than on any other sample. Thus, this method of apatite coating Ti–7.5Mo appears to be promising for artificial bone substitutes or other hard tissue replacement materials with heavy load-bearing applications due to their desirable combination of bioactivity, low elastic modulus, and low processing costs.  相似文献   

15.
A dense and pure hydroxyapatite [HA, Ca10(PO4)6(OH)2] coating and a fluoridated HA [Ca10(PO4)6(OH)0.67F1.33] are deposited on Ti6Al4V substrates by sol-gel dip coating method. Glucose and bovine serum albumin have been added in standard simulated body fluid (SBF) to form organic-containing SBF in simulation of the physiological blood plasma. The HA and the fluoridated HA coatings are immersed in the standard and modified SBF for time periods of 2, 4, 7, 14 and 28 days at 37 ± 0.1°C. After soaking, the coating surface is examined for nucleation and growth of apatite using SEM morphological observation. The post-soaking SBF solutions are analyzed via Inductively Coupled Plasma spectroscopy for calcium ion concentration. The results show that at concentration of 40 g/L, bovine serum albumin has significant retardation effect on apatite precipitation from SBF onto pure or fluoridated HA coatings; Fluorine-incorporation in HA has positive bio-activation effect in both standard SBF and organic-containing SBF. However, glucose addition in SBF does not generate significant influence on the bioactivity of HA and fluoridated HA.  相似文献   

16.
Using citric acid as reducing agent and fuel, nitrate as a oxidant, boric acid as a flux material, red persistent phosphors CaTiO3: Pr3+, Al3+ have been successfully synthesized by nitrate-citric acid combustion method. The best route is determined by studying influences of the amount of citric acid and ammonium nitrate, pH value of the solution, initiating temperature of furnace, and the amount of boric acid. The photoluminescence and crystallinity of persistent phosphors were investigated by using luminescence spectrometer and X-ray diffractometer (XRD), respectively. The results show that the optimum molar ratio of citric acid to calcium nitrate was about 0.8 and that of boric acid to calcium nitrate was about 0.4. Photoluminescence and decay curves show that the samples exhibited the optimal luminous properties at pH value of 6 and at the initiating temperature of 700 °C.  相似文献   

17.
The objective of this experiment was to develop biomimetic calcium phosphate coatings on low-modulus Ti–7.5Mo substrates treated with NaOH aqueous solutions and subsequent water aging before soaking them in simulated body fluid (SBF). Specimens of commercially pure titanium (c.p. Ti) and Ti–7.5Mo were initially treated with 5 M NaOH at 60 °C for 24 h, resulting in the formation of a porous network structure composed of sodium titanate (Na2Ti5O11). Afterward, the specimens were aged in distilled water at 80 °C for 12, 24, or 48 h, and subsequently immersed in 1.5SBF at 37 °C for either 1 or 13 days. The calcium phosphate-forming abilities of the c.p. Ti and Ti–7.5Mo achieved by a single NaOH treatment were low, but were significantly increased by the water aging. The amount of calcium phosphate deposited on the Ti–7.5Mo after NaOH treatment and subsequent water aging for 12 or 24 h was much greater than other conditions. The calcium phosphate-coated Ti–7.5Mo has strong potential as an artificial bone substitute or in other hard tissue-replacement materials with heavy load-bearing requirements due to a favorable combination of bioactivity, low elastic modulus, and low processing costs.  相似文献   

18.
Bioactive Ti—6Al—4V alloy, which spontaneously forms a bonelike apatite layer on its surface in the body and bonds to living bone through this apatite layer, can be prepared by producing an amorphous sodium titanate on its surface by NaOH and heat treatments. In this study, the process of apatite formation on the bioactive Ti—6Al—4V alloy was investigated in vitro, by analyzing its surface with X-ray photoelectron spectroscopy as a function of soaking time in a simulated body fluid 4SBF). Thin-film X-ray diffractometry of the alloy surface and atomic emission spectroscopy of the fluid were also performed complementarily. It was found that immediately after immersion in the SBF,the alloy exchanged Na1 ions from the surface sodium titanate with H3O1 ions in the fluid to form Ti-OH groups on its surface. The Ti-OH groups, immediately after their formation,incorporated the calcium ions in the fluid to form calcium titanate. The calcium titanate thereafter incorporated the phosphate ions in the fluid to form an amorphous calcium phosphate, which was later crystallized into bonelike apatite. This process of apatite formation on the alloy was the same as on the pure titanium metal, because the alloy formed the sodium titanate free of Al and V by the NaOH and heat treatments. The initial formation of the calcium titanate is proposed to be a consequence of the electrostatic interaction of negatively charged units of titania dissociated from the Ti-OH groups with the positively charged calcium ions in the fluid. The calcium titanate is postulated to gain a positive charge and interact with the negatively charged phosphate ions in the fluid to form amorphous calcium phosphate, which eventually stabilizes into crystalline apatite.  相似文献   

19.
Bioactive Ti–6Al–4V alloy, which spontaneously forms a bonelike apatite layer on its surface in the body and bonds to living bone through this apatite layer, can be prepared by producing an amorphous sodium titanate on its surface by NaOH and heat treatments. In this study, the process of apatite formation on the bioactive Ti–6Al–4V alloy was investigated in vitro, by analyzing its surface with X-ray photoelectron spectroscopy as a function of soaking time in a simulated body fluid (SBF). Thin-film X-ray diffractometry of the alloy surface and atomic emission spectroscopy of the fluid were also performed complementarily. It was found that immediately after immersion in the SBF, the alloy exchanged Na+ ions from the surface sodium titanate with H3O+ ions in the fluid to form Ti-OH groups on its surface. The Ti-OH groups, immediately after their formation, incorporated the calcium ions in the fluid to form calcium titanate. The calcium titanate thereafter incorporated the phosphate ions in the fluid to form an amorphous calcium phosphate, which was later crystallized into bonelike apatite. This process of apatite formation on the alloy was the same as on the pure titanium metal, because the alloy formed the sodium titanate free of Al and V by the NaOH and heat treatments. The initial formation of the calcium titanate is proposed to be a consequence of the electrostatic interaction of negatively charged units of titania dissociated from the Ti-OH groups with the positively charged calcium ions in the fluid. The calcium titanate is postulated to gain a positive charge and interact with the negatively charged phosphate ions in the fluid to form amorphous calcium phosphate, which eventually stabilizes into crystalline apatite.  相似文献   

20.
The objective of this study was to propose a surface modification for a low-modulus Ti–7.5Mo alloy to initiate the formation of hydroxyapatite (HA) during in vitro bioactivity tests in simulated body fluid (SBF). Specimens of commercially pure titanium (c.p. Ti) and Ti–7.5Mo were initially immersed in a 15 M NaOH solution at 60°C for 24 h, resulting in the formation of a porous network structure composed of sodium titanate (Na2Ti5O11). Afterwards, bioactive Bioglass® particles were deposited on the surface of NaOH-treated c.p. Ti and Ti–7.5Mo. The specimens were then immersed in SBF at 37°C for 1, 7 and 28 days, respectively. The apatite-forming ability of the NaOH-treated and Bioglass®-coated Ti–7.5Mo was higher than that of the c.p. Ti under the same condition. The X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDS) results indicated that the deposited amounts of calcium phosphate were much greater for the surface-treated Ti–7.5Mo than for the c.p. Ti, a finding attributable to or correlated with the higher pH value of the SBF containing surface-treated Ti–7.5Mo. Moreover, in the surface-treated Ti–7.5Mo, the pH value of the SBF approached a peak of 7.66 on the first day. A combination of NaOH treatment and subsequent Bioglass® coating was successfully used to initiate in vitro HA formation in the surface of the Ti–7.5Mo alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号