首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
We have analyzed the vortex dynamics in Py(1???m)/SiO2(10?nm)/Nb(360?nm) thin film heterostructures as resulted from Magnetic Force Microscopy (MFM) frequency shift maps at low temperatures. The Nb film thickness has been chosen larger than the superconducting London penetration depth of about ?? L=68 nm at the measuring temperatures. Above the Nb T c, the stripe-like Py stray field is visualized with half-period w Py=520 nm. Below the Nb T c, we have found that in a zero applied field, the supercurrents established in the Nb layer completely screen the out-of-plane component of the Py stray field. However, when the samples are cooled in a uniform external magnetic field, vortices are formed in chain-like configurations along the stripes with the same polarity. By decreasing and reversing the applied field, for low intensities, we have found a rigidity of the vortex array that remains ??frozen?? in the configuration as determined after the first field cooling run. The observed symmetry is then broken for higher values of the applied field, when an antivortex ??avalanche?? enters the Ferromagnetic/Superconducting (FM/SC) system.  相似文献   

2.
The anisotropic magnetoresistance of single domain walls in S/F hybrid devices was studied with a view of examining the superconducting proximity effect at a single domain wall. By changing the geometry of a Py/Nb nanowire, the character of the domain wall that is nucleated can be controlled. The pinning of both vortex and transverse domain walls at narrow notches in the wires was investigated. In addition, the effect of the interfacial transparency between a superconductor and ferromagnet is also briefly discussed, showing a reduction of the superconducting proximity effect with poorer transparency.  相似文献   

3.
The spin transfer torque is essential for electrical magnetization switching. When a magnetic domain wall is driven by an electric current through an adiabatic spin torque, the theory predicts a threshold current even for a perfect wire without any extrinsic pinning. The experimental confirmation of this 'intrinsic pinning', however, has long been missing. Here, we give evidence that this intrinsic pinning determines the threshold, and thus that the adiabatic spin torque dominates the domain wall motion in a perpendicularly magnetized Co/Ni nanowire. The intrinsic nature manifests itself both in the field-independent threshold current and in the presence of its minimum on tuning the wire width. The demonstrated domain wall motion purely due to the adiabatic spin torque will serve to achieve robust operation and low energy consumption in spintronic devices.  相似文献   

4.
Magnetic domain wall (DW) motion induced by spin transfer torque in magnetic nanowires is of emerging technological interest for its possible applications in spintronic memory or logic devices. Co/Pd multilayered magnetic nanowires with perpendicular magnetic anisotropy were fabricated on the surfaces of Si wafers by ion-beam sputtering. The nanowires had different sized widths and pinning sites formed by an anodic oxidation method via scanning probe microscopy (SPM) with an MFM tip. The magnetic domain structure was changed by an anodic oxidation method. To discover the current-induced DW motion in the Co/Pd nanowires, we employed micromagnetic modeling based on the Landau-Lifschitz-Gilbert (LLG) equation. The split DW motions and configurations due to the edge effects of pinning site and nanowire appeared.  相似文献   

5.
Lateral nanostructuring is an efficient tool to control vortex confinement in superconductors. This will be illustrated by studying pinning phenomena in type-II superconducting Pb films with a lattice of submicron magnetic dots. We consider rectangular Co dots with in-plane magnetization and circular Co/Pt dots with out-of-plane magnetization. The domain structure of the Co dots can be changed from multi- to single-domain, resulting in an enhancement of their stray field. After covering this Co dot array with a Pb film, we demonstrate the influence of the local magnetic stray field of the dots on their flux pinning efficiency. The Co/Pt dots have a single-domain structure with their magnetic moment out of plane. Depending on the magnetic history, the magnetic moment of all dots can be aligned in positive or negative direction, or a random distribution of positive and negative magnetic moments of the dots can be achieved. For a Pb film covering this Co/Pt dot array, we observe an asymmetric magnetization loop due to the magnetic interactions between the vortices and the magnetic dots.  相似文献   

6.
《Journal of Modern Optics》2013,60(6):665-677
The stray field modulation of magnetic flux in superconductors can be converted into an optical or electron optical contrast by various decoration techniques, which are reviewed. Thin films decorated in this way are analysed in a transmission, scanning, or scanning transmission electron microscope and permit one to study the configuration of the magnetic flux relative to the crystalline structure. Results of electron interferometer experiments on the flux quantization in small superconducting hollow cylinders, on the motion of single flux quanta, and on their pinning forces at grain boundaries, will be surveyed.  相似文献   

7.
Ahn SM  Moon KW  Cho CG  Choe SB 《Nanotechnology》2011,22(8):085201
We have found that the depinning field of domain walls (DWs) in permalloy (Ni(81)Fe(19)) nanowires can be experimentally controlled by interactions between magnetic stray fields and artificial constrictions. A pinning geometry that consists of a notch and a nanobar is considered, where a DW traveling in the nanowire is pinned by the notch with a nanobar vertical to it. We have found that the direction of magnetization of the nanobar affects the shape and local energy minimum of the potential landscape experienced by the DW; therefore, the pinning strength strongly depends on the interaction of the magnetic stray field from the nanobar with the external pinning force of the notch. The mechanism of this pinning behavior is applied for the instant and flexible control of the pinning strength with respect to various DW motions in DW-mediated magnetic memory devices.  相似文献   

8.
Understanding the interaction between the magnetic domain wall and the various artificial defects in ferromagnetic nanowires has been of utmost importance for the future realization of the spintronic devices based on the magnetic domain wall motion in nanowires. In this work, the chirality filter effect of the magnetic domain wall in T-shaped ferromagnetic nanowires with a stray field filter was investigated via micromagnetic simulation. A tapered wire was attached to the flat nanowires to form a potential barrier or well for the domain wall propagating along them. For the domain wall passing through the potential barrier or the potential well, the spin structure of the domain wall and the interaction between the domain wall and the potential barrier/well were investigated in detail. The chirality-dependent translational positioning of the domain wall was intensively examined for the potential barrier and potential well cases. The domain wall chirality transmission on relatively long length scales using a series of potential wells was explored.  相似文献   

9.
The superconducting and structural properties of S/F/S (Superconductor/Ferromagnet/Superconductor) heterostructures have been studied by means of microwave measurements (1–20 GHz) and x-ray absorption fine structure (XAFS) spectroscopy. Nb/PdNi/Nb trilayers have been studied as a function of F layer thickness. With respect to pure Nb, XAFS analysis shows that the heterostructures exhibit larger structural disorder in the S layers. Microwave measurements show evidence for a progressively weaker vortex pinning with increasing F thickness. However, no clear correlation is found with the local disorder in Nb: the weakest pinning is not in the most disordered trilayer. Therefore, the structural disorder in the superconducting material cannot explain on its own the changes in vortex pinning. We argue that the F layer acts on the superconducting state itself. We propose possible explanations for the observed behavior.  相似文献   

10.
Hysteresis of critcal currentsI c of superconducting bridges with In, Nb, and NbN has been studied in low perpendicular magnetic fields. Influences of bridge geometry, small field sweep, trapped flux, and bombardment of argon ions on the hysteresis were made clear. The experimental results suggest that the edge pinning and trapped flux in the bank of bridges are associated with the hysteresis. The peak value ofI c of NbN bridges, as well as granular Al and In bridges reported before, in decreasing fields agrees with the calculated pair-breaking current. The origin of the hysteresis is discussed.  相似文献   

11.
A model of weakly pinned flux lines is described, permitting the calculation of the maximum current transverse field characteristic of a superconducting wire in the range of low fields. Studying the penetration of the first flux lines, the initial shape of the maximum current curve is found to be linear, up to a field which depends on the strength of pinning. Beyond this field the calculation of the maximum current requires a determination and investigation of the field distribution inside and outside the wire. This leads, the vortex state being only partially achieved, to a Hilbert problem involving a free boundary.  相似文献   

12.
Circular soft magnetic dots are the main elements of many proposed novel spintronics devices, capable of fascinating spin-based electronics applications, from extremely sensitive magnetic field sensors, to current-tunable microwave vortex oscillators. Here, we investigate static and broadband dynamic magnetization responses of vertically coupled Permalloy (Py) magnetic dots in the vortex state in layered nanopillars (experiment and simulations), which were explored as a function of in-plane magnetic field and interlayer separation. Under reduction of magnetic field from saturation for the field range just above vortex-vortex ground state. We observe a metastable double vortex state for each of the dots. In this state, novel kinds of spin waves (Winter’s magnons along domain walls between vortex cores and half-edge antivortex) are excited. For dipolarly coupled circular Py(25 nm)/Cu(20 nm)/Py(25 nm) trilayer nanopilars of diameter 600 nm, a small in-plane field splits the eigenfrequencies of azimuthal spin wave modes inducing an abrupt transition between acoustic (in-phase) and optic (out-of-phase) kinds of the low-lying coupled spin wave modes. Qualitatively similar changes (although more gradual and at higher values of in-plane fields) occur in the exchange coupled Py(25 nm)/Cu(1 nm)/Py(25 nm) trilayer nanopillars. These findings are in qualitative agreement with micromagnetic dynamic simulations.  相似文献   

13.
YBa2Cu3O7?δ (YBCO) thin films have been deposited on bare and La0.67Sr0.33MnO3 (LSMO) modified single crystal SrTiO3 (STO) substrates. The effect of randomly distributed ferromagnetic LSMO nanoparticles and a complete LSMO layer, present at STO/YBCO interface, on the superconducting properties of YBCO thin films has been investigated by temperature dependent magnetization studies. The YBCO thin film on LSMO nanoparticles decorated STO substrate shows significant improvement in the critical current density and pinning force density as compared to the YBCO thin film deposited on bare STO substrate and this improvement is more significant at higher applied magnetic field. However, the LSMO/YBCO bilayer showed the improved flux pinning properties only up to a magnetic field of 1.5 T above which it deteriorates. In the case of LSMO/YBCO bilayer, the underlying LSMO layer gives rise to magnetic inhomogeneities due to domain structure, which leads to improved flux pinning properties limited to lower field. However, in the case of LSMO nanoparticles decorated substrate, the presence of LSMO nanoparticles at YBCO/STO interface seems to introduce magnetic inhomogeneities as well as structural defects, which might be acting as correlated pinning sites leading to improved flux pinning properties of the YBCO thin film over a wide range of applied magnetic field.  相似文献   

14.
An anomalous Kerr loop was observed in an oriented LaBaMno film annealed in oxygen. Many tiny crystal columns were observed with scanning tunneling microscope and magnetic force microscope. The magnetic moment m in the column is perpendicular outward to the surface, which forms a surface phase with spin pinning state. This spin pinning results in the obvious asymmetrical Kerr loop of magneto-optical effect when the magnetic field is in the two opposite directions vertical to the surface.  相似文献   

15.
Nam C  Jang Y  Lee KS  Cho BK 《Nanotechnology》2008,19(1):015703
The characteristics of domain wall (DW) pinning and propagation in a three-terminal magnetic Y-junction were investigated, where the junction consisted of two input and one output wires. The output switching depends strongly on the junction angle (α). Junctions with high angles of α>9.5° lead to DW pinning at the junction, whereas junctions with low angles of α<9.5° have no DW pinning effect. At the critical angle of α = 9.5°, the Y-junction showed a multimode DW propagation, which was ascribed to a moderate transverse field effect.  相似文献   

16.
The pinning of superconducting vortices in type-II superconductors has been studied for a long time due to the wide variety of unusual flux flow phenomena and more importantly, for its relevance in applications, since vortex pinning is one of the essential parameters controlling the enhancement of critical currents. A case of particular interest is the use of artificial magnetic pinning centers, since they can be fabricated to match well the characteristic length scales relevant for superconductivity and their magnetization offers another degree of freedom to influence the pinning properties. This article reviews our work on the role of the size and separation of the magnetic dots. Furthermore, we also show that the magnetic configuration can influence significantly the pinning strength, through the magnetic stray fields penetrating the superconductor, which can be drastically different.  相似文献   

17.
In magnetic random access memory (MRAM) devices, soft magnetic thin film elements such as permalloy (Py) are used as unit cells of information. The epitaxial integration of these elements with the technologically important substrate Si (1 0 0) and a thorough understanding of their magnetic properties are critical for CMOS-based magnetic devices. We report on the epitaxial growth of Ni82.5Fe17.5 (permalloy, Py) on Si (1 0 0) using a TiN/MgO buffer layer. Initial stages of growth are characterized by the formation of discrete islands that gradually merge into a continuous film as deposition times are extended. Interestingly, we find that the magnetic features of Py films in early stages of island coalescence are distinctly different from the films formed initially (discrete islands) and after extended deposition times (narrow distribution of equiaxed granular films). Isothermal in-plane and out-of-plane magnetic measurements performed on these transitional films show highly anisotropic magnetic behavior with an easy magnetization axis lying in the plane of the film. Importantly, when this sample is zero-field cooled, a positive exchange bias and vertical loop shift are observed, unusual for a soft ferromagnet like Py. Repeated field cycling and hysteresis loops up to the fields of 7T produced reproducible hysteresis loops indicating the existence of strongly pinned spin configurations. Classical interface related exchange bias models cannot explain the observed magnetic features of the transitional Py films. We believe that the anomalous magnetic behavior of such Py films may be explained by considering the highly irregular morphology that develops at intermediate growth times that are possibly also undergoing a transition from Bloch to Neel domain wall structures as a function of Py island size. This study broadens the current understanding of magnetic properties of Py thin layers for technological applications in magneto-electronic devices, integrated with Si (1 0 0).  相似文献   

18.
The motion of a domain wall under the action of an alternating magnetic field was studied during its interaction with a pinning plane. First and second harmonics of the electronic force were measured by a lock-in amplifier, using a computer-controlled system. Good agreement was obtained between theory and experiment. Therefore, results of these experiments were used to determine the characteristics of the pinning place in the sample. The optimal frequency and amplitude of the exciting field have been investigated using this effect and have been used to develop a magnetic sensor  相似文献   

19.
The effect of the fractal clusters of a normal phase, which act as pinning centers, on the dynamics of magnetic flux in percolative type-II superconductor is considered. The main features of these clusters are studied in detail: the cluster statistics is analyzed; the fractal dimension of their boundary is estimated; the distribution of critical currents is obtained, and its peculiarities are explored. It is found that there is the range of fractal dimension where this distribution has anomalous statistical properties, specifically, its dispersion becomes infinite. It is examined how the finite resolution capacity of the cluster geometric size measurement affects the estimated value of fractal dimension. The effect of fractal properties of the normal phase clusters on the electric field arisen from magnetic flux motion is investigated for the cluster area distribution of different kinds. The voltage-current characteristics of fractal superconducting structures in the resistive state are obtained for an arbitrary fractal dimension. It is revealed that the fractality of the boundaries of the normal phase clusters intensifies the magnetic flux trapping and thereby raises the critical current of a superconductor.  相似文献   

20.
本文通过研究不同方向外加磁场下NiO70nm/Co 5.5nm/Cu 3.5nm/Co 5 .5nm 自旋阀结构中磁电阻的变化,探讨了NiO 反铁磁层对相邻的Co 层的钉扎作用。研究发现,材料中的钉扎方向是唯一确定的,只有沿着钉扎方向反向增大外场,才能获得高的巨磁电阻效应和磁灵敏度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号