首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multiwall carbon nanotubes (MWCNTs) have been widely used in many disciplines due to their unique physical and chemical properties, but have also raised great concerns about their possible negative health impacts, especially through occupational exposure. Although recent studies have demonstrated that MWCNTs induce granuloma formation and/or fibrotic responses in the lungs of rats or mice, their cellular and molecular mechanisms remain largely unaddressed. Here, it is reported that the TGF‐β/Smad signaling pathway can be activated by MWCNTs and play a critical role in MWCNT‐induced pulmonary fibrosis. Firstly, in vivo data show that spontaneously hypertensive (SH) rats administered long MWCNTs (20–50 μm) but not short MWCNTs (0.5–2 μm) exhibit increased fibroblast proliferation, collagen deposition and granuloma formation in lung tissue. Secondly, the in vivo experiments also indicate that only long MWCNTs can significantly activate macrophages and increase the production of transforming growth factor (TGF)‐β1, which induces the phosphorylation of Smad2 and then the expression of collagen I/III and extracellular matrix (ECM) protease inhibitors in lung tissues. Finally, the present in vitro studies further demonstrate that the TGF‐β/Smad signaling pathway is indeed necessary for the expression of collagen III in fibroblast cells. Together, these data demonstrate that MWCNTs stimulate pulmonary fibrotic responses such as fibroblast proliferation and collagen deposition in a TGF‐β/Smad‐dependent manner. These observations also suggest that tube length acts as an important factor in MWCNT‐induced macrophage activation and subsequent TGF‐β1 secretion. These in vivo and in vitro studies further highlight the potential adverse health effects that may occur following MWCNT exposure and provide a better understanding of the cellular and molecular mechanisms by which MWCNTs induce pulmonary fibrotic reactions.  相似文献   

2.
Nanostructures resulting from the incorporation of silver iodide into single-wall carbon nanotubes (SWCNTs) of various diameters have been studied using molecular dynamics simulation. The results indicate the formation of single-wall silver iodide nanotubes when the SWCNT diameter is within 14.2 Å, whereas thicker carbon tubes contain, in addition, an axial “filament” of silver and iodide ions. AgI nanotubes in SWCNTs typically have a hexagonal structure (with the ions in trigonal coordination).  相似文献   

3.
Single walled carbon nanotubes (SWCNT) find their way in various industrial applications. Due to the expected increased production of various carbon nanotubes and nanoparticle containing products, exposure to engineered nanoparticles will also increase dramatically in parallel. In this study the effects of SWCNT raw material and purified SWCNT (SWCNT bundles) on cell behaviour of mesothelioma cells (MSTO-211H) and on epithelial cells (A549) had been investigated. The effect on cell behaviour (cell proliferation, cell activity, cytoskeleton organization, apoptosis and cell adhesion) were dependent on cell type, SWCNT quality (purified or not) and SWCNT concentration.  相似文献   

4.
Carbon nanotubes (CNT) in their various forms have great potential for use in the development of multifunctional multiscale laminated composites due to their unique geometry and properties. Recent advancements in the development of CNT hierarchical composites have mostly focused on multi-walled carbon nanotubes (MWCNT). In this work, single-walled carbon nanotubes (SWCNT) were used to develop nano-modified carbon fiber/epoxy laminates. A functionalization technique based on reduced SWCNT was employed to improve dispersion and epoxy resin-nanotube interaction. A commercial prepregging unit was then used to impregnate unidirectional carbon fiber tape with a modified epoxy system containing 0.1 wt% functionalized SWCNT. Impact and compression-after-impact (CAI) tests, Mode I interlaminar fracture toughness and Mode II interlaminar fracture toughness tests were performed on laminates with and without SWCNT. It was found that incorporation of 0.1 wt% of SWCNT resulted in a 5% reduction of the area of impact damage, a 3.5% increase in CAI strength, a 13% increase in Mode I fracture toughness, and 28% increase in Mode II interlaminar fracture toughness. A comparison between the results of this work and literature results on MWCNT-modified laminated composites suggests that SWCNT, at similar loadings, are more effective in enhancing the mechanical performance of traditional laminated composites.  相似文献   

5.
In situ Raman spectroelectrochemistry has been used to distinguish between thin single-wall carbon nanotubes (SWCNT) and the inner tubes of double-wall carbon nanotubes (DWCNT). The spectroelectrochemical method is based on the different change of the electronic structure of the inner tube in DWCNT and that of SWCNT during electrochemical charging, which is reflected in the Raman spectra. During electrochemical charging the inner tubes of DWCNT exhibit a delayed attenuation of the intensities of their Raman modes as referred to the behavior of SWCNT of similar diameter. The changes are pronounced for the radial breathing mode (RBM), and thus, these modes are diagnostic for the distinction of inner tubes of DWCNT from the thin SWCNT. The different sensitivities of inner and outer tubes to the applied electrochemical charging is a simple analytical tool for differentiation of SWCNT and DWCNT in a mixture. The significance of the proposed method is demonstrated on a commercial DWCNT sample.  相似文献   

6.
Single-walled carbon nanotubes (SWCNT) show unique properties find applications in micro devices; electronics to biological systems specially drug delivery and gene therapy. However the manufacture and extensive use of nanotubes raises concern about its safe use and human health. Very few studies have been carried out on toxicity of carbon nanotubes in experimental animals and humans, thus resulted in limiting their use. The extensive toxicological studies using in vitro and in vivo models are necessary and are required to establish safe manufacturing guidelines and also the use of SWCNT. These studies also help the chemists to prepare derivative of SWCNT with less or no toxicity. The present study was undertaken to determine the toxicity exhibited by SWCNT in rat lung epithelial cells as a model system. Lung epithelial cells (LE cells) were cultured with or without SWCNT and reactive oxygen species (ROS) produced were measured by change in fluorescence using dichloro fluorescein (DCF). The results show increased ROS on exposure to SWCNT in a dose and time dependent manner. The decrease in glutathione content suggested the depletion and loss of protective mechanism against ROS in SWCNT treated cells. Use of rotenone, the inhibitor of mitochondrial function have no effect on ROS levels suggested that mitochondria is not involved in SWCNT induced ROS production. Studies carried out on the effect of SWCNT on superoxide dismutase (SOD-1 and SOD-2) levels in LE cells, indicates that these enzyme levels decreased by 24 hours. The increased ROS induced by SWCNT on LE cells decreased by treating the cells with 1 mM of glutathione, N-Acetyl Cysteine, and Vitamin C. These results further prove that SWCNT induces oxidative stress in LE cells and shows loss of antioxidants.  相似文献   

7.
Poly(ethylene terephthalate) (PET) is one of the most extensively used thermoplastic polyesters out on the market, and it has been implemented in many forms. There has been limited work in the area of PET reinforced with single-walled carbon nanotubes (SWCNT) in mechanical properties. Nanocomposites based on PET with small contents of SWCNT were prepared by in situ polymerization. Elastic constants were determined by tensile tests performed on specimens instrumented with strain gauges. Assuming random orientation distribution of nanotubes, experimental Young’s modulus and Poisson’s ratio values were compared to some micromechanical models (Cox and Krenchel, Halpin–Tsai and Mori–Tanaka) which take into account orientation and aspect ratio of the nanotubes. However, the waviness of the nanotubes is a factor that influences the reinforcing efficiency.  相似文献   

8.
Based on nonlocal theory of thermal elasticity mechanics, a nonlocal elastic Timoshenko beam model is developed for free vibration analysis of zigzag single-walled carbon nanotube (SWCNT) considering thermal effect. The nonlocal constitutive equations of Eringen are used in the formulations. The equivalent Young’s modulus and shear modulus for zigzag SWCNT are derived using an energy-equivalent model. Results indicate significant dependence of natural frequencies on the temperature change as well as the chirality of zigzag carbon nanotube. These findings are important in mechanical design considerations of devices that use carbon nanotubes.  相似文献   

9.
Hartree–Fock (HF) calculations for a variety of single-walled carbon nanotube (SWCNT) systems indicate linear relationships between electronic energies and changes in length and circumference for both armchair and zigzag type nanotubes. A simple protocol to predict energies for large SWCNT (C atoms >500) is developed through a set of structural parameters and AM1 optimized geometries from small SWCNTs. The energetic trends shown by the calculations are used to support the theory of SWCNT nucleation from a preformed carbon, or graphene with six 5-member rings, cap.  相似文献   

10.
Nanotechnology is finding its use as a potential technology in consumer products, defense, electronics, and medical applications by exploiting the properties of nanomaterials. Single-walled carbon nanotubes are novel forms of these nanomaterials with potential for large applications. However, the toxicity studies on this material are not explored in detail and therefore limiting its use. It has been earlier reported that single-walled carbon nanotubes induces oxidative stress and also dictates activation of specific signaling pathway in keratinocytes. The present study explores the effect of single-walled carbon nanotubes on stress genes in human BJ Foreskin cells. The results show induction of oxidative stress in BJ Foreskin cells by single-walled carbon nanotubes and increase in stress responsive genes. The genes included inducible genes like HMOX1, HMOX2, and Cyp1B1. In addition we validated increase for four genes by SWCNT, namely ATM, CCNC, DNAJB4, and GADD45A by RT-PCR. Moreover results of the altered stress related genes have been discussed and that partially explains some of the toxic responses induced by single-walled carbon nanotubes.  相似文献   

11.
Using first principles calculations, we investigate the atomic and electronic structure of carbon nanowires (CNWs) as the carbon chain inserted into single wall carbon nanotubes (SWCNTs). It indicates that the (5,5) CNW system exhibits metallic character, however, the insertion of carbon chain can transit a semi-conducting (9,0) SWCNT into a metallic.  相似文献   

12.
13.
In this work, molecular dynamics simulations were utilized to probe the interfacial enhancement between aromatic polymers and single walled carbon nanotube (SWCNT) induced by molecular orientation. Two aromatic polymers, polyphenylene sulfide (PPS) and polystyrene (PS) were chosen for comparison study. It was found that orientation of polymer chain could bring about an obvious promotion in interfacial interaction for both systems. In PPS/SWCNT systems, the increased interfacial interaction energy was due to the easy formation of offset π–π stacking, while in PS/SWCNT systems the formation of edge-to-face π–π stacking contributed to the enhancement. Polymer/SWCNT composites were also constructed and a similar interfacial enhancement was observed as well. The mechanism of the orientation induced enhancement was a combination of forming more π–π stacking and better coating effect. This will help to deepen the understanding of interfacial interaction in aromatic polymers/carbon nanotubes composites and guide the fabrication of high performance materials.  相似文献   

14.
We reviewed and examined recent progresses related to the nanochemistry and nanobiology of signal-walled carbon nanotubes (SWCNTs), focusing on the diameters of SWCNTs and how the diameters affect the interactions of SWCNT with protein and DNA, which underlay more complex biological responses. The diameters of SWCNTs are closely related to the electronic structure and surface chemistry of SWCNTs, and subsequently affect the interaction of SWCNTs with membrane, protein, and DNA. The surfaces of SWCNT with smaller diameters are more polar, and these with large diameters are more hydrophobic. The preference of SWCNT to interact with Trp/Phe/Met residues indicates it is possible that SWCNT may interfere with normal protein-protein interactions. SWCNT-DNA interactions often change DNA conformation. Besides the promising future of using SWCNTs as delivering nanomaterial, thermal therapy, and other biological applications, we should thoroughly examine the possible effects of carbon nanotube on interrupting normal protein-protein interaction network and other genetic effects at the cellular level.  相似文献   

15.
We reviewed and examined recent progresses related to the nanochemistry and nanobiology of signal-walled carbon nanotubes (SWCNTs), focusing on the diameters of SWCNTs and how the diameters affect the interactions of SWCNT with protein and DNA, which underlay more complex biological responses. The diameters of SWCNTs are closely related to the electronic structure and surface chemistry of SWCNTs, and subsequently affect the interaction of SWCNTs with membrane, protein, and DNA. The surfaces of SWCNT with smaller diameters are more polar, and these with large diameters are more hydrophobic. The preference of SWCNT to interact with Trp/Phe/Met residues indicates it is possible that SWCNT may interfere with normal protein-protein interactions. SWCNT-DNA interactions often change DNA conformation. Besides the promising future of using SWCNTs as delivering nanomaterial, thermal therapy, and other biological applications, we should thoroughly examine the possible effects of carbon nanotube on interrupting normal protein-protein interaction network and other genetic effects at the cellular level.  相似文献   

16.
X-ray fluorescence microscopy (microXRF) is applied for the first time to study macrophages exposed to unpurified and purified single-walled (SW) and multiwalled (MW) carbon nanotubes (CNT). Investigating chemical elemental distributions allows one to (i) image nanotube localization within a cell and (ii) detect chemical modification of the cell after CNT internalization. An excess of calcium is detected for cells exposed to unpurified SWCNT and MWCNT and related toxicological assays are discussed.  相似文献   

17.
Ultra-thin (2-5 nm thick) aluminum oxide layers were grown on non-functionalized individual single walled carbon nanotubes (SWCNT) and their bundles by atomic layer deposition (ALD) technique in order to investigate the mechanism of the coating process. Transmission electron microscopy (TEM) was used to examine the uniformity and conformality of the coatings grown at different temperatures (80 degrees C or 220 degrees C) and with different precursors for oxidation (water and ozone). We found that bundles of SWCNTs were coated continuously, but at the same time, bare individual nanotubes remained uncoated. The successful coating of bundles was explained by the formation of interstitial pores between the individual SWCNTs constituting the bundle, where the precursor molecules can adhere, initiating the layer growth. Thicker alumina layers (20-35 nm thick) were used for the coating of bottom-gated SWCNT-network based field effect transistors (FETs). ALD layers, grown at different conditions, were found to influence the performance of the SWCNT-network FETs: low temperature ALD layers caused the ambipolarity of the channel and pronounced n-type conduction, whereas high temperature ALD processes resulted in hysteresis suppression in the transfer characteristics of the SWCNT transistors and preserved p-type conduction. Fixed charges in the ALD layer have been considered as the main factor influencing the conduction change of the SWCNT network based transistors.  相似文献   

18.
The energy and Young's modulus as a function of tube length for (10, 10) armchair single-walled carbon nanotubes (SWCNTs) are investigated by using a linear scaling self-consistent-charge density functional tight binding (SCC-DFTB) method. It is found that the formula derived from total energy for a zigzag SWCNT [Physica B404, 3930 (2009)] can be also used to explain these calculated length-dependent properties. Moreover, a transition occurs from fast change of length-dependent properties of the SWCNT to their slow change. This transition corresponds to the SWCNT's length of about 5 nm. The length for the armchair SWCNT is about one half of that of the corresponding Zigzag SWCNTs. In addition, a definition of volume for a short SWCNT is discussed.  相似文献   

19.
The effect of carboxylation on axial Young’s modulus of carbon nanotubes is investigated using a molecular dynamics (MD) approach. COMPASS force field is used to model the interatomic interactions in single wall (SWCNT) and multiwall carbon (MWCNT) with different amounts of –COOH groups attached to their surfaces. The results of the MD simulations show how an increase of the number of carboxylic groups on the CNT surface leads to a decrease on the Young moduli of the CNTs. The decrease of MWCNT Young’s modulus is found to be lower than in the case of SWCNT.  相似文献   

20.
We report high purity and high yield synthesis of single-wall carbon nanotubes (SWCNTs) of narrow diameter from iron-copper bimetal catalysts. The SWCNTs with diameter of 0.8-1.2 nm are synthesized using the zeolite-supported alcohol chemical vapour deposition method. Single metal and bimetal catalysts are systematically investigated to achieve both the enhancement of SWCNT yield and the suppression of the undesired formation of graphitic impurities. The relative yield and purity of SWCNTs are quantified using optical absorption spectroscopy with an ultracentrifuge-based purification technique. For the single metal catalyst, iron shows the highest catalytic activity compared with the other metals such as cobalt, nickel, molybdenum, copper, and platinum. It has been found that the addition of copper to iron results in the suppression of carbonaceous impurity formation without decreasing the SWCNT yield. The purity-enhanced SWCNT shows fairly low sheet resistance due to the improvement of inter-nanotube contacts. This scalable design of SWCNT synthesis with enhanced purity is therefore a promising tool for shaping future high performance devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号