首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
陈鹏  徐朝阳 《包装工程》2019,40(15):92-97
目的 以纳米纤维素气凝胶为骨架,对苯二酚为增强相,并加入还原氧化石墨烯,制备纳米纤维素/还原氧化石墨烯复合电极薄膜,将其应用于超级电容器。方法 采用超声处理制备纳米纤维素/氧化石墨烯混合溶液;在高温高压的环境下,加入对苯二酚,采用水热合成法和冷冻干燥法制备纳米纤维素/还原氧化石墨烯气凝胶,并最终制成电极膜。结果 在纳米纤维素/还原氧化石墨烯复合气凝胶中,石墨烯可将纳米纤维素均匀包裹,形成三维多孔网络结构;纳米纤维素/还原氧化石墨烯复合电极具有良好的电化学性能,在1 mol/L的H2SO4溶液中,当电流扫描速率为1 mA/cm2时,超级电容器比面积电容高达1.621 F/cm2,且在2000次循环测试后,电容保留率为88.3%。结论 以纳米纤维素为基体制备的纳米纤维素/还原氧化石墨复合电极具有良好的电化学性能,可以用作超级电容器电极。  相似文献   

2.
滕佑超  魏婧  李大纲 《包装工程》2020,41(19):82-89
目的 制备具有优异电化学性能的石墨烯/纳米纤维素/二氧化锰复合纤维水系超级电容器。方法 采用超声波分散处理制备氧化石墨烯/纳米纤维素/二氧化锰混合纺丝液;运用湿纺纺丝工艺制备氧化石墨烯/纳米纤维素/二氧化锰杂化纤维电极;通过氢碘酸还原和冷冻干燥处理构建具有多孔结构的石墨烯/纳 米纤维素/二氧化锰复合纤维电极;最后,将其组装成两电极水系超级电容器。结果 在石墨烯/纳米纤维素/二氧化锰复合纤维中,纳米纤维素的添加有效抑制了石墨烯片层的自聚集,并显著提升了复合纤维的亲水性和拉伸强度。二氧化锰的加入显著提升了纤维电极的电化学性能。得益于精心的实验设计,石墨烯/纳米纤维素/二氧化锰复合纤维的拉伸强度为338 MPa。组装后的水系超级电容器具有优异的电容性能和循环稳定性,在电流密度为0.1 mA/cm2时,面积电容为412.5 mF/cm2,循环1500次后,电容保持率为87%。结论 将切实可行的湿法纺丝策略与精心设计的电极结构相结合,制备的石墨烯/纳米纤维素/二氧化锰水系超级电容器为可穿戴便携式储能设备和智能包装能源供应系统的发展提供了良好的参考。  相似文献   

3.
张兴丽  陈之岳  陈昊 《功能材料》2023,(1):1092-1096
纳米纤维素是具有可再生性、可降解性的天然高分子材料。基于氧化石墨烯优越的物理性能,采用真空抽滤方法制备纳米纤维素-氧化石墨烯高度有序层状结构以提高纳米纤维素薄膜的力学强度和疏水性能。实验结果表明,当石墨烯质量分数为4%时,纳米纤维素-氧化石墨烯层状薄膜的拉伸强度达到最大值204.4 MPa,比原始CNCs薄膜抗拉强度提升58.8%。层状薄膜的弹性模量随氧化石墨烯质量分数的增加呈现先增加后降低的趋势。通过对层状薄膜进行微观形貌分析和动态热机械性能分析验证了力学试验结果的准确性。对纳米纤维素薄膜和纳米纤维素-氧化石墨烯层状薄膜的接触角进行测定,发现由于纳米纤维素的氢键网络与氧化石墨烯表面游离羟基之间的相互作用,层状薄膜的疏水性能显著提升。  相似文献   

4.
普鲁士蓝大尺寸复合膜的制备和结构表征   总被引:1,自引:0,他引:1  
采用化学合成法制备了不同纳米尺寸的普鲁士蓝纳米粒子,均匀地分散在大片层的氧化石墨烯溶液中。通过抽滤制备大片层的普鲁士蓝-氧化石墨烯复合薄膜。将薄膜经HI处理,还原成石墨烯复合薄膜,制备了功能拓展、导电性增强、稳定的普鲁士蓝-石墨烯复合纳米膜材料。对膜材料进行表征研究了其晶体结构、分子光谱特征变化和宏观的二维结构和力学性能。复合薄膜可以被弯曲,呈现出较好的韧性。  相似文献   

5.
目的 制备氧化微晶纤维素交联壳聚糖复合膜,并探索交联改性对壳聚糖复合薄膜性能的影响。方法 首先采用高碘酸钠氧化法对微晶纤维素进行氧化处理,制备氧化微晶纤维素,再通过溶液共混流延法制备不同质量分数(0%、1%、3%、5%、7%、9%)的氧化微晶纤维素交联壳聚糖复合薄膜。通过对复合薄膜组分、形貌、力学性能、光学性能、热稳定性及阻隔性能的表征,考察不同含量的氧化微晶纤维素对壳聚糖薄膜各性能的影响。结果 氧化微晶纤维素表面的醛基能与壳聚糖中的氨基发生交联反应,氧化微晶纤维素的加入可以改善壳聚糖薄膜的拉伸强度和断裂伸长率,复合薄膜的拉伸强度和断裂伸长率最大分别达到了43.07 MPa和19.42%;随着氧化微晶纤维素含量的增大,复合薄膜的紫外屏蔽性能增强,水蒸气透过系数增高,但热稳定性未见明显变化。结论 采用氧化微晶纤维素交联改性壳聚糖可以有效改善壳聚糖薄膜的力学性能和紫外屏蔽性能,有助于进一步扩大其包装应用范围。  相似文献   

6.
采用化学气相聚合法制备了聚-3,4-乙烯二氧噻吩(PEDOT)/还原氧化石墨烯(RGO)复合薄膜。首先用旋涂法制备氧化剂/氧化石墨烯(GO)薄膜,然后将薄膜置于3,4-乙烯二氧噻吩(EDOT)气相聚合装置中,形成PEDOT/GO复合薄膜。将获得的PEDOT/GO复合薄膜用葡萄糖还原剂进行处理,获得PEDOT/RGO复合薄膜。导电性测试表明,GO被还原后复合薄膜的电导率为35.3S/cm,明显高于PEDOT/GO(14.6S/cm)和纯PEDOT(17.3S/cm)薄膜的电导率。电化学特性研究表明,RGO的加入使得PEDOT/RGO导电聚合物复合纳米材料具有优良的电化学特性及稳定性,薄膜的比电容为176.7F/g。循环测试800次后,比容量保持率为84%,具有良好的电化学稳定性。这种化学气相聚合制备的聚合物复合纳米薄膜在超级电容器及导电材料领域有着很好的应用前景。  相似文献   

7.
樊志敏  郑玉婴  曹宁宁  张延兵 《功能材料》2015,(3):3105-3109,3114
采用氧化法将碳纳米管纵向切割成氧化石墨烯纳米带,利用溶液成形在涂膜机上制备氧化石墨烯纳米带/TPU复合材料薄膜。FT-IR、拉曼光谱、XRD、FE-SEM、TEM等测试表明,碳纳米管成功地被纵向切割成带状结构的氧化石墨烯纳米带。力学测试表明,当氧化石墨烯纳米带用量为2%(质量分数)时,复合材料薄膜弹性模量与拉伸强度相比TPU薄膜提高了160%与123%。氧气透过率测试表明当氧化石墨烯纳米带用量为2%(质量分数)时,复合材料薄膜氧气透过率降低77%,阻隔性能明显提高。  相似文献   

8.
以2,2,6,6-四甲基哌啶-氮-氧化物(TEMPO)氧化松木粉纳米纤维素(TOCNs)为增强相、α-纤维素粉制备再生纤维素(RC)为基体,采用溶胶-凝胶法制备氧化纳米纤维素增强再生纤维素(TOCNs/RC)全纤维素复合薄膜。对不同TOCNs添加量下TOCNs/RC全纤维素复合薄膜的力学性能、光学性能、氧气阻隔性能和热稳定性能进行研究,并通过FTIR、SEM、TEM、XRD和流变仪对TOCNs和TOCNs/RC全纤维素复合薄膜的结构、形貌及纤维素溶液流变性能进行表征。结果表明,TOCNs添加量对TOCNs/RC全纤维素复合薄膜的力学性能有显著影响,当TOCNs添加量(与纤维素基体的质量比)为1.0%时,TOCNs/RC全纤维素复合薄膜的拉伸强度和断裂能分别可达134.3 MPa和21.51 MJ·m?3,具有最佳的综合力学性能;TOCNs/RC全纤维素复合薄膜的透光率随TOCNs添加量的增加而下降,雾度随TOCNs添加量的增加而增大,但仍保持较高的透光率(>85%)和较低的雾度(<14%);TOCNs/RC全纤维素复合薄膜还具有优异的氧气阻隔性,TOCNs添加量为1.6%时,其透氧系数仅为1.47×10?17cm3·cm/cm2·s·Pa。TOCNs/RC全纤维素复合薄膜有优于一般塑料薄膜的拉伸强度和氧气阻隔性,并有可媲美于塑料薄膜的透明度,可作软包装复合材料的强度层和阻隔层,在绿色高性能包装材料领域具有广阔的应用前景。   相似文献   

9.
石墨烯/聚乳酸复合材料的制备与性能研究   总被引:2,自引:2,他引:0  
目的制备具有优异阻隔性能及热稳定性的聚乳酸薄膜材料。方法在聚乳酸中添加石墨烯对其进行改性。首先采用改进的Hummers法将鳞片状石墨制备成氧化石墨烯,继而采用热剥离法将氧化石墨烯还原剥离为石墨烯,然后以聚乳酸为基材,还原后的石墨烯为增强相,采用流延法制备石墨烯/聚乳酸复合薄膜,并测试了其结构、热稳定性以及阻隔性能。结果红外分析表明,石墨被强氧化剂氧化后形成了以C—OH,—COOH,C—O—C和C=O等官能团形式存在的石墨层间化合物,还原后获得的石墨烯剥离充分;石墨烯/聚乳酸复合薄膜的热稳定性能和阻隔性能随石墨烯含量的增加而逐渐增强。结论在试验参数范围内,石墨烯/聚乳酸复合薄膜的热稳定性和阻隔性能优于聚乳酸薄膜。  相似文献   

10.
采用水热法制备Ag@AgCl溶胶,并采用静电自组装技术在石英基片上通过交替提拉氧化石墨烯(GO)和Ag@AgCl溶胶,制备Ag@AgCl/GO复合薄膜并用做表面增强拉曼光谱基底。采用SEM、XRD、EDS、UV-Vis以及共聚焦激光拉曼光谱测试仪对复合薄膜的结构及性能进行表征。结果表明,通过静电自组装法可以获得结构稳定,性能优异的薄膜。Ag@AgCl/GO复合薄膜除了对罗丹明6G具有优异的表面增强拉曼散射性能外(拉曼增强因子可达107数量级),由于AgCl的引入使体系具有优异的光催化降解性能,可以实现Ag@AgCl/GO表面增强拉曼光谱基底的循环利用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号