首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Tungsten powders were fabricated by Self-propagating High-temperature Synthesis (SHS) method with sodium tungstate (Na2WO4) and magnesium (Mg) as raw reactants. The effect of the molar ratios of Mg/Na2WO4 on the compositions of combustion products was investigated. The results show that, it is advantageous for more Mg in the raw reactants than the stoichiometric quantity to decrease the impurities in the combustion products and increase the completeness of the synthesis reaction of tungsten. At last, tungsten powders can be obtained after the acid enrichment and distilled water washing.  相似文献   

2.
(K0.5Na0.5)NbO3 powders and ceramics were prepared by a novel hybrid method of sol–gel and ultrasonic atomization, in which Nb2O5 was used as the niobium source to replace those expensive soluble niobium salts. X-ray diffraction and thermal analysis were performed to investigate the synthesis process and phase transformation behavior of (K0.5Na0.5)NbO3 powders. The results showed that (K0.5Na0.5)NbO3 powders with a reasonably fine particle size and single-phase perovskite structure were formed at a temperature as low as 650 °C. Dense (K0.5Na0.5)NbO3 ceramics with a relative density of 93% were obtained using the refined powders. The (K0.5Na0.5)NbO3 ceramics prepared by the novel hybrid method exhibited relatively good properties (d33 = 90 pC/N, kp = 0.32, Pr = 20.6 μC/cm2, Tc = 405 °C, εr = 712), suggesting that this novel hybrid method might be a promising method for the powders and ceramics preparation.  相似文献   

3.
Effects of Na2W2O7 addition on low-temperature sintering, microstructure and microwave dielectric properties of CaWO4 were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and microwave dielectric resonator methods in this paper. The CaWO4 material could be sintered into a dense ceramic (~ 96% theoretical density) at 850 °C/2 h without affecting its microwave dielectric properties greatly by adding appropriate amount of Na2W2O7. The XRD results showed that CaWO4 main phase with trace amount of Na2W2O7 second phase was observed in (1 − x) CaWO4-xNa2W2O7 (0 < x ≤ 0.04) ceramics. The chemical compatibility of 0.96CaWO4-0.04Na2W2O7 ceramic with silver (Ag) powders was also investigated. The Ag showed inert behavior with 0.96CaWO4-0.04Na2W2O7 ceramic when co-fired at 875 °C for 2 h.  相似文献   

4.
Vanadium/tungsten mixed oxide (V2O5/WO3) sensing membranes were deposited on glassy carbon substrates and used as the H+ sensor of the extended gate field effect transistor (EGFET) device. X-ray diffractograms indicated a decrease of the interplanar spacing of V2O5 after the insertion of WO3 revealing that the lamellar structure is under compressive stress. The crystallinity increases with increasing WO3 molar ratio. The film is not homogeneous, with more WO3 material sitting at the surface. This influences the response of pH sensors using the EGFET configuration. The maximum sensitivity of 68 mV pH−1 was obtained for the sample with 5% WO3 molar ratio. For higher WO3 molar ratios, the behavior is not linear. It can be concluded that V2O5 dominates for acidic solutions while WO3 dominates for basic solutions. Therefore, the mixed oxide with low amount of WO3 is the main candidate for further use as biosensor.  相似文献   

5.
The magnesium composites containing Zr2(WO4)(PO4)2 (ZWP) particles with negative thermal expansion (NTE) were synthesized. Dense, unreacted Mg/ZWP composites were fabricated by extruding the two component powders. The coefficient of thermal expansion (CTE) and the mechanical properties of the composites were examined. The CTE of Mg/ZWP composites decreased with an increase in the amount of ZWP in the composites, though the effect was not significant probably because of the low bulk modulus of ZWP. Although there was a tension–compression asymmetry in the room temperature yield strength of Mg without ZWP, the difference reduced in the composites. The decreased asymmetry of yield behavior was suggested to be resulting from the tensile residual stress in the matrix produced during fabrication process because of the NTE of ZWP.  相似文献   

6.
KxNa1 − xNbO3 ceramic powders have been successfully synthesized in different salts (NaCl, KCl, NaCl-KCl). Our results reveal that KxNa1 − xNbO3 powders with single-phase perovskite structure can be formed at a low temperature such as 750 °C. The type of salts has significant effects on the morphology and chemical composition of the powders. As Na+ has a higher diffusing rate and occupies the A-site in the perovskite structure more easily as compared to K+, the powder contains only a small amount of K+ (x ∼ 0.10) when it is synthesized according to formula K0.5Na0.5NbO3 and in a flux containing the same molar content of Na+ and K+. By using a NaCl or KCl salt, the K+ concentration x can be adjusted to almost 0 and 0.77, respectively.  相似文献   

7.
The n-type tungsten oxide (WO3) polycrystalline thin films have been prepared at an optimized substrate temperature of 250 °C by spray pyrolysis technique. Precursor solution of ammonium tungstate ((NH4)2WO4) was sprayed onto the well cleaned, pre-heated fluorine doped tin oxide coated (FTO) and glass substrates with a spray rate of 15 ml/min. The structural, surface morphological and optical properties of the as-deposited WO3 thin films were studied. Mott-Schottky (M-S) studies of WO3/FTO electrodes were conducted in Na2SO4 solution to identify their nature and extract semiconductor parameters. The electrochromic properties of the as-deposited and lithiated WO3/FTO thin films were analyzed by employing them as working electrodes in three electrode electrochemical cell using an electrolyte containing LiClO4 in propylene carbonate (PC) solution.  相似文献   

8.
Polycrystalline lead-free ceramics (K0.17Na0.83)NbO3 + x wt.% WO3; (x = 0, 1, 3 and 5) have been synthesized via solid state reaction method. X-ray diffraction pattern at room temperature indicates the formation of pure perovskite phase with monoclinic structure for all samples. Dielectric constant versus temperature measurements shows an increase in dielectric constant with a shift in Curie temperature (TC) toward higher temperature side. Remnant polarization (Pr) is found to be enhanced and reached upto 24 μC/cm2 for x = 5 wt.% WO3 from 12.5 μC/cm2 for pure (K0.17Na0.83)NbO3 ceramic. The value of coercive field (Ec) decreases with increasing wt.% of WO3. From optical band gap study, we found blue shift in the band gap of (K0.17Na0.83)NbO3 with increasing concentration of WO3.  相似文献   

9.
Following the structural evolution of the Aurivillius crystalline framework in the solid solution Bi2WO6-Sb2WO6 we have carried out an electrochemical lithium insertion study in this system. A slight loss of the specific capacity of the electrochemical cell was observed as amount of Sb was increased. In general, the different compositions within solid solution Bi2−xSbxWO6 (0.25 ≤ x ≤ 0.75) exhibited a similar behaviour featured mainly by two semiconstant potential regions located at 1.7 and 0.8 V versus Li+/Lio. The oxide Sb2WO6 with Autivillius structure but without Bi was tested as cathode too. The maximum amount of lithium inserted, 13.5 lithium atoms per formula, is the same amount inserted in its homologous bismuth oxide Bi2WO6.  相似文献   

10.
为了降低ZrB_2粉体的合成温度,并在此基础上合成粒径细小、纯度高的ZrB_2粉体,以ZrO2及B4C为原料,以Mg粉为还原剂,以NaCl-KCl为熔盐介质,研究熔盐镁热还原法低温合成ZrB_2超细粉体的工艺。探讨了反应温度、B/Zr物质的量比及Mg粉用量对合成ZrB_2超细粉体的影响,并对粉体的物相组成及显微结构进行了表征。结果表明合成ZrB_2的起始温度为1 173K,最佳合成温度为1 473K。合成纯相的ZrB_2粉体最佳工艺条件为:B/Zr物质的量比为2.2,Mg过量50%(质量分数),1 473K反应3h。所合成ZrB_2粉体的晶粒尺寸为30~300nm。  相似文献   

11.
The liquidus relations in the Na2WO4–LiPO3–WO3system (diagonal section of the quaternary mutual system Li,Na||PO3,WO4,WO3) were studied by thermal analysis at WO3contents of 60 mol %. The results demonstrate that, in the composition region studied, the liquidus surface comprises the primary-crystallization fields of Na2WO4, LiPO3, and the congruently melting compounds Na2WO4· WO3, 3LiPO3· WO3, Na2WO4· NaPO3, and 2Li2WO4· LiPO3. The low-melting compositions revealed in the system studied are of interest for the preparation of Li x Na y WO3bronzes.  相似文献   

12.
In the present study, the production parameters of tungsten boride compounds by self-propagating high-temperature synthesis (SHS) method and following leaching process were investigated. In the SHS stage, the products consisting of tungsten borides, magnesium oxide, magnesium borate, and also minor compounds were obtained by using different initial molar ratios of WO3, Mg and B2O3 as starting materials. In the leaching step, Mg containing byproducts, i.e. MgO and Mg3B2O6, existed in the selected SHS product synthesized at 1:8:2.5 initial molar ratio of WO3:Mg:B2O3 were leached out by using aqueous HCl solution to obtain clean tungsten boride compounds at different experimental parameters which are time, acid concentration and temperature. The acid leaching experiments of the SHS product showed that optimum leaching conditions could be achieved by using 5.8 M HCl at 1/10 S/L ratio and the temperature of 80 °C for 60 min.  相似文献   

13.
Pure and Ni-doped sodium tungstate (Na2WO4) powders were synthesised by simultaneous crystallisation method. The effects of Ni doping on the structural, optical, and magnetic properties of the host Na2WO4 powder were studied. The study of X-ray diffraction shows that the incorporated Ni ions occupy locations in interstitial positions and substitution for W ion in the Na2WO3 lattice. A monophase cubic structure was obtained when the as-crystallised Na2WO4 powder was doped with Ni ions or annealed in hydrogen gas atmosphere (hydrogenation). The optical properties were studied by diffuse reflectance spectroscopy (DRS) technique. It was established that the direct bandgap of Na2WO4 exhibits red shift from 4.6 to 3.50 eV with Ni doping and blue shift to 5.13 eV with hydrogenation. The purpose of the present study is to study conditions necessary to prepare powders having room-temperature ferromagnetic (RT-FM) properties. Therefore, the Na2WO4 nano-powder was doped with Ni ions. RT-FM properties were obtained with Ni-doped Na2WO4 that was strongly enhanced by hydrogenation so that the energy product (EP) was increased by 213 %. This enhancement was attributed to the enhancement of the magnetic medium for the spin-spin (S-S) interaction inside the crystalline medium. In general, an experimental relationship was established between O vacancies, optical absorption, and magnetic properties of the studied crystal. Thus, it was proved, for the first time, the possibility of producing Na2WO4 having RT-FM, where magnetic characteristics can be tailored by doping and post-treatment under H2 atmosphere, thus a new potential candidate to be used in magnetic applications of ferroelectric crystals.  相似文献   

14.
Tricalcium phosphate based ceramics (TCP) are bioresorbable and thereby considered to be promising bone replacement materials. The differences in crystal structure between α and β-TCP phases gives rise for different dissolution rates in vitro and in vivo, which may alter the bioresorbable behavior of TCP ceramics. It is suggested that the addition of magnesium ions, which are also present in biological tissues, stabilizes β-phase to higher temperatures and thus enables the sintering of β-TCP at elevated temperatures compared to Mg free TCP.In this paper, Mg-substituted TCP, with the general formula (Ca1−xMgx)3(PO4)2 and 0.01 ≤ x ≤ 0.045, were produced by wet chemical synthesis from Ca(OH)2, H3PO4 and MgO, after calcinations at three different temperatures between 750 and 1050 °C. The influence of different amounts of Mg substitution on the physical properties, microstructure, and sintering behavior of calcium phosphate powders was evaluated. Thermal analytical techniques, together with X-ray diffraction analysis, were successfully combined in order to characterize the occurring phase transformations during annealing of the powders. The results show that the addition of small amounts of Mg (up to 1.5 mol%) are adequate to postpone the β-α TCP phase transformation to 1330 °C and to accelerate the densification process during sintering of β-TCP ceramics.  相似文献   

15.
The effect of oxide additives on the low-temperature sintering and dielectric properties of microwave dielectrics (Zn,Mg)TiO3 have been investigated. The study showed that a small amount of V2O5 accelerated the densification rate of (Zn,Mg)TiO3 dielectrics as compared with the other oxide additives. In addition to lower sintering temperature of zinc titanate dielectrics, the addition of V2O5 decreased the decomposition temperature of (Zn,Mg)TiO3. Additionally, the increased amount of magnesium raised both the sintering temperature and the decomposition temperature of (Zn,Mg)TiO3. Relative permittivity of (Zn,Mg)TiO3 dielectrics decreased accompanied with increase of Q × f as the amount of magnesium content increased. The temperature coefficient of resonant frequency of (Zn,Mg)TiO3 shifted to more negative values as the amount of magnesium increased.  相似文献   

16.
R. Azimirad  O. Akhavan 《Vacuum》2008,82(8):821-826
A simple method for synthesis of NaxWO3 nanowhiskers on tungsten thin films with 40 nm thickness sputtered on soda lime substrate as a source of sodium atoms has been reported for the first time. After heat treatment of the W thin films at 650 °C in N2 ambient for different times (15, 80 and 180 min), crystalline NaxWO3 nanowhiskers with [0 0 1] direction were obtained. scanning electron microscopy (SEM), X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS) and optical transmission/reflection measurements were employed to determine various properties of the grown nanowhiskers. Experimental results revealed that size and density of nanowhiskers were dependent on the annealing time and found that the 80-min heat treatment was a proper time for the growth of sodium-doped tungsten oxide nanowhiskers, in our experimental conditions. According to SEM observations, the synthesized nanowhiskers have 70-300 nm in width and 1-10 μm in length. It was also observed that by increasing the heating time to 180 min resulted in diffusion of the nanowhiskers into the substrate.  相似文献   

17.
Highly oriented (1 0 0) NaxWO3 thin films were fabricated in the composition range 0.1 ≤ x ≤ 0.46 by pulsed laser deposition technique. The films showed transition from metallic to insulating behaviour at a critical composition between x = 0.15 and 0.2. The pseudo-cubic symmetry of NaxWO3 thin films across the transition region is desirable for understanding the composition controlled metal-insulator transition in the absence of any structural phase transformation. The electrical transport properties exhibited by these films across the transition regime were investigated. While the resistivity varied as T2 at low temperatures in the metallic regime, a variable range hopping conduction was observed for the insulating samples. For metallic compositions, a non-linear dependence of resistivity in temperature was also observed from 300 to 7 K, whose exponent varied with the composition of the film.  相似文献   

18.
WO3⋅ H2O nanoplates were prepared by the acidification of Na2WO4? 2H2O and converted into monoclinic WO3 nanoplates by heat treatment. The sizes, morphologies and preferred orientation of the WO3 nanoplates could be controlled by manipulating the acidity of the solution used for the acidification reaction. All of the WO3 nanoplates showed the selective detection of NO2 in the presence of other reducing gases, such as C2H5OH, CH3COCH3, CO, C3H8, and H2. The gas response, selectivity, and response speed were optimized by varying the morphology of the sensing materials and operation temperature. The WO3 nanoplates with a mean edge size of 192 nm showed the most rapid gas response along with a high response and selectivity to NO2 when operated at 300 °C.  相似文献   

19.
Several synthetic approaches were used to obtain nano-sized porous and nonporous monoclinic WO3 (m-WO3) powders. All of these methods begin with a standard preparative method where H2WO4 is first generated by passing a Na2WO4 solution through a cation-exchange resin. It is shown that high surface area particles are produced by dripping the H2WO4 exiting from the ion-exchange column into a solution containing oxalate and acetate exchange ligands or alternatively, into a water-in-oil (W/O)-based emulsion. Porous materials are produced using surfactant-templating architectures. The surface properties were investigated by IR spectroscopic studies during thermal evacuation and the use of chemical probes. The nature of the surface depends on the initial evacuation temperature of the WO3 surface as this alters the relative number of the Lewis and Brønsted acid sites along with the amount of adsorbed water. Infrared studies of the adsorption of various molecules on the powders led to a new size-selective approach to improve selectivity in semiconducting metal oxide (SMO) sensors. The key for achieving high selectivity is based on using a dual sensor configuration where the response on a porous WO3 powder sensor was compared to the response on a nonporous WO3 powder sensor. Detection selectivity between methanol and dimethyl methylphosphonate (DMMP) is obtained because the access of a gas molecule in the interior pore structure of WO3 is size-dependent leading to a size-dependent magnitude change in the conductivity of the SMO sensor.  相似文献   

20.
Multistructural tungsten oxide samples were prepared using the hydrothermal method in the presence of different sulfates. In this paper, we present WO3 nanorods, WO3 toothpicks and cubic WO3 samples prepared in the presence of Na2SO4, Li2SO4 and FeSO4, respectively. These catalysts were characterized by XRD, SEM, TEM, EDS and UV-vis DR. It is found that Fe2O3 was impregnated in the cubic WO3 which is different from other two samples. After Pt loading, Pt-loaded WO3 with different morphology acting as novel visible light-driven photocatalysts showed remarkably high photocatalytic activity under visible light radiation. Significantly, the maximum efficiency of photodegradation was observed at 1 wt.% Pt loading amount in the cubic WO3 sample. The highest photocatalytic activity of the cubic Pt/Fe2O3/WO3 photocatalyst is attributed to the synergistic action of Pt nanoparticles and Fe2O3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号