首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In supply chain optimisation problems, determining the location, number and capacity of facilities is concerned as strategic decisions, while mid-term and short-term decisions such as assembly policy, inventory levels and scheduling are considered as the tactical and operational decision levels. This paper addresses the optimisation of strategic and tactical decisions in the supply chain network design (SCND) under demand uncertainty. In this respect, a two-stage stochastic programming model is developed in which strategic location decisions are made in the first-stage, while the second-stage contains SCND problem and the assembly line balancing as a tactical decision. In the solution scheme, the combination of sample average approximation and Latin hypercube sampling methods is utilised to solve the developed two-stage mixed-integer stochastic programming model. Finally, computational experiments on randomly generated problem instances are presented to demonstrate the performance and power of developed model in handling uncertainty. Computational experiments showed that stochastic model yields better results compared with deterministic model in terms of objective function value, i.e. the sum of the first-stage costs and the expected second-stage costs. This issue proved that uncertainty would be a significant and fundamental element of developed model and improve the quality of solutions.  相似文献   

2.
This paper presents a novel application of metaheuristic algorithms for solving stochastic programming problems using a recently developed gaining sharing knowledge based optimization (GSK) algorithm. The algorithm is based on human behavior in which people gain and share their knowledge with others. Different types of stochastic fractional programming problems are considered in this study. The augmented Lagrangian method (ALM) is used to handle these constrained optimization problems by converting them into unconstrained optimization problems. Three examples from the literature are considered and transformed into their deterministic form using the chance-constrained technique. The transformed problems are solved using GSK algorithm and the results are compared with eight other state-of-the-art metaheuristic algorithms. The obtained results are also compared with the optimal global solution and the results quoted in the literature. To investigate the performance of the GSK algorithm on a real-world problem, a solid stochastic fixed charge transportation problem is examined, in which the parameters of the problem are considered as random variables. The obtained results show that the GSK algorithm outperforms other algorithms in terms of convergence, robustness, computational time, and quality of obtained solutions.  相似文献   

3.
Recent years witness a great deal of interest in artificial intelligence (AI) tools in the area of optimization. AI has developed a large number of tools to solve the most difficult search-and-optimization problems in computer science and operations research. Indeed, metaheuristic-based algorithms are a sub-field of AI. This study presents the use of the metaheuristic algorithm, that is, water cycle algorithm (WCA), in the transportation problem. A stochastic transportation problem is considered in which the parameters supply and demand are considered as random variables that follow the Weibull distribution. Since the parameters are stochastic, the corresponding constraints are probabilistic. They are converted into deterministic constraints using the stochastic programming approach. In this study, we propose evolutionary algorithms to handle the difficulties of the complex high-dimensional optimization problems. WCA is influenced by the water cycle process of how streams and rivers flow toward the sea (optimal solution). WCA is applied to the stochastic transportation problem, and obtained results are compared with that of the new metaheuristic optimization algorithm, namely the neural network algorithm which is inspired by the biological nervous system. It is concluded that WCA presents better results when compared with the neural network algorithm.  相似文献   

4.
Mišković  Stefan 《OR Spectrum》2017,39(4):1011-1033

This study introduces a robust variant of the well-known dynamic maximal covering location problem (DMCLP) and proposes an integer linear programming formulation of the robust DMCLP. A hybrid approach for solving both deterministic and robust variant of the DMCLP is developed, which is based on hybridization of a Variable neighborhood search and a linear programming technique. The main idea is to split the problem into subproblems and to combine optimal solutions of the obtained subproblems in order to construct solution of the initial problem. The results of the proposed hybrid approach on instances of the deterministic DMCLP are presented and compared with the results of the state-of-the-art approach from the literature and with the results of commercial CPLEX solver. The presented computational analysis shows that the proposed hybrid algorithm outperforms other approaches for the DMCLP. In addition, the algorithm was tested on the instances of the robust variant of DMCLP, and obtained results are discussed in detail.

  相似文献   

5.
不定二次约束二次规划问题广泛应用于芯片设计、无线通信网络、财政金融和众多工程实际问题.目前尚没有通用的全局收敛准则,这使得求解该问题的全局最优解面临着极大挑战.本文使用矩阵的初等变换技巧将原问题转化为等价双线性规划问题,基于等价问题的特征和线性化松弛技巧构造了等价问题的松弛线性规划,通过求解一系列松弛规划问题的最优解逐步逼近原问题的全局最优解.证明了算法的全局收敛性,并进行数值对比和随机实验,实验结果表明算法高效可行.  相似文献   

6.
A linear approximation model is developed for transportation problems with stochastic demand where integer solutions are required. The technique reduces the stochastic integer programming problem to a deterministic linear approximating problem which can be solved as a capacitated transportation problem. Either the transportation algorithm or the primal-dual algorithm may be used thereby insuring integer solutions.  相似文献   

7.
In this article, a new solution approach for the multiple choice multidimensional knapsack problem is described. The problem is a variant of the multidimensional knapsack problem where items are divided into classes, and exactly one item per class has to be chosen. Both problems are NP-hard. However, the multiple choice multidimensional knapsack problem appears to be more difficult to solve in part because of its choice constraints. Many real applications lead to very large scale multiple choice multidimensional knapsack problems that can hardly be addressed using exact algorithms. A new hybrid heuristic is proposed that embeds several new procedures for this problem. The approach is based on the resolution of linear programming relaxations of the problem and reduced problems that are obtained by fixing some variables of the problem. The solutions of these problems are used to update the global lower and upper bounds for the optimal solution value. A new strategy for defining the reduced problems is explored, together with a new family of cuts and a reformulation procedure that is used at each iteration to improve the performance of the heuristic. An extensive set of computational experiments is reported for benchmark instances from the literature and for a large set of hard instances generated randomly. The results show that the approach outperforms other state-of-the-art methods described so far, providing the best known solution for a significant number of benchmark instances.  相似文献   

8.
The double row layout problem (DRLP) consists of arranging a number of rectangular machines of varying widths on either side of a corridor to minimize the total cost of material handling for products that move between these machines. This problem arises in the context of many production environments, most notably semiconductor manufacturing. Because the DRLP contains both combinatorial and continuous aspects, traditional solution approaches are not well suited to obtain solutions within a reasonable time. Moreover, previous approaches to this problem did not consider asymmetric flows. In this paper, an effective local search procedure featuring linear programming is proposed for solving the DRLP with asymmetric flows (symmetric flows being a special case). This approach is compared against several constructive heuristics and solutions obtained by a commercial mixed integer linear programming solver to evaluate its performance. Computational results show that the proposed heuristic is an effective approach, both in terms of solution quality and computational effort.  相似文献   

9.
In this study, we consider stochastic single machine scheduling problem. We assume that setup times are both sequence dependent and uncertain while processing times and due dates are deterministic. In the literature, most of the studies consider the uncertainty on processing times or due dates. However, in the real-world applications (i.e. plastic moulding industry, appliance assembly, etc.), it is common to see varying setup times due to labour or setup tools availability. In order to cover this fact in machine scheduling, we set our objective as to minimise the total expected tardiness under uncertain sequence-dependent setup times. For the solution of this NP-hard problem, several heuristics and some dynamic programming algorithms have been developed. However, none of these approaches provide an exact solution for the problem. In this study, a two-stage stochastic-programming method is utilised for the optimal solution of the problem. In addition, a Genetic Algorithm approach is proposed to solve the large-size problems approximately. Finally, the results of the stochastic approach are compared with the deterministic one to demonstrate the value of the stochastic solution.  相似文献   

10.
This paper presents two new solution procedures for a deterministic lot size problem, a matrix algorithm and a heuristic matrix method. The algorithm is based on the dual of a linear programming model formulation of the lot size problem, and it provides optimal solutions even in the general case of time-varying parameters. A comparison of the efficiency of the new solution procedures with well-known methods is developed. New applications of the techniques described within the fields of engineering (optimal design of a pump-pipe system) and economics (a model for import-planning) are referred to.  相似文献   

11.
We study a stochastic multiperiod production planning and sourcing problem of a manufacturer with a number of plants and/or subcontractors. Each source, i.e. each plant and subcontractor, has a different production cost, capacity, and lead time. The manufacturer has to meet the demand for different products according to the service level requirements set by its customers. The demand for each product in each period is random. We present a methodology that a manufacturer can utilize to make its production and sourcing decisions, i.e., to decide how much to produce, when to produce, where to produce, how much inventory to carry, etc. This methodology is based on a mathematical programming approach. The randomness in demand and related probabilistic service level constraints are integrated in a deterministic mathematical program by adding a number of additional linear constraints. Using a rolling horizon approach that solves the deterministic equivalent problem based on the available data at each time period yields an approximate solution to the original dynamic problem. We show that this approach yields the same result as the base stock policy for a single plant with stationary demand. For a system with dual sources, we show that the results obtained from solving the deterministic equivalent model on a rolling horizon gives similar results to a threshold subcontracting policy. Correspondence to: Fikri KaraesmenThe authors are grateful to Yves Dallery for his ideas, comments and suggestions on the earlier versions of this paper.  相似文献   

12.
In the optimal plastic design of mechanical structures one has to minimize a certain cost function under the equilibrium equation, the yield condition and some additional simple constraints, like box constraints. A basic problem is that the model parameters and the external loads are random variables with a certain probability distribution. In order to get reliable/robust optimal designs with respect to random parameter variations, by using stochastic optimization methods, the original random structural optimization problem must be replaced by an appropriate deterministic substitute problem. Starting from the equilibrium equation and the yield condition, the problem can be described in the framework of stochastic (linear) programming problems with ‘complete fixed recourse’. The main properties of this class of substitute problems are discussed, especially the ‘dual decomposition’ data structure which enables the use of very efficient special purpose LP-solvers.  相似文献   

13.
The paper suggests a possible cooperation between stochastic programming and optimal control for the solution of multistage stochastic optimization problems. We propose a decomposition approach for a class of multistage stochastic programming problems in arborescent form (i.e. formulated with implicit non-anticipativity constraints on a scenario tree). The objective function of the problem can be either linear or nonlinear, while we require that the constraints are linear and involve only variables from two adjacent periods (current and lag 1). The approach is built on the following steps. First, reformulate the stochastic programming problem into an optimal control one. Second, apply a discrete version of Pontryagin maximum principle to obtain optimality conditions. Third, discuss and rearrange these conditions to obtain a decomposition that acts both at a time stage level and at a nodal level. To obtain the solution of the original problem we aggregate the solutions of subproblems through an enhanced mean valued fixed point iterative scheme.  相似文献   

14.
This paper presents a mixed-integer linear optimisation model to analyse the intermodal transportation systems in the Turkish transportation industry. The solution approach includes mathematical modelling, data analysis from real-life cases and solving the resulting mathematical programming problem to minimise total transportation cost and carbon dioxide emissions by using two different exact solution methods in order to find the optimal solutions. The novel approach of this paper generates Pareto solutions quickly and allows the decision makers to identify sustainable solutions by using a newly developed solution methodology for bi-objective mixed-integer linear problems in real-life cases.  相似文献   

15.
随机规划经验逼近最优解集序列的几乎处处上半收敛性   总被引:2,自引:0,他引:2  
本文对随机规划经验逼近最优解集的几乎处处上半收敛性进行了研究。首先通过经验概率测度替代初始规划的概率测度得到随机规划的经验逼近模型,然后将带有约束的随机规划问题转化成与其等价的无约束的随机规划问题,最后利用上图收敛性理论,给出了随机规划经验逼近最优解集的几乎处处上半收敛性。本文采用的经验逼近方法可应用于研究随机规划统计估计问题的一致相合性、稳健性、极大似然估计的强相合性。  相似文献   

16.
This paper proposes and tests an approximation of the solution of a class of piecewise deterministic control problems, typically used in the modeling of manufacturing flow processes. This approximation uses a stochastic programming approach on a suitably discretized and sampled system. The method proceeds through two stages: (i) the Hamilton-Jacobi-Bellman (HJB) dynamic programming equations for the finite horizon continuous time stochastic control problem are discretized over a set of sampled times; this defines an associated discrete time stochastic control problem which, due to the finiteness of the sample path set for the Markov disturbance process, can be written as a stochastic programming problem; and (ii) the very large event tree representing the sample path set is replaced with a reduced tree obtained by randomly sampling over the set of all possible paths. It is shown that the solution of the stochastic program defined on the randomly sampled tree converges toward the solution of the discrete time control problem when the sample size increases to infinity. The discrete time control problem solution converges to the solution of the flow control problem when the discretization mesh tends to zero. A comparison with a direct numerical solution of the dynamic programming equations is made for a single part manufacturing flow control model in order to illustrate the convergence properties. Applications to larger models affected by the curse of dimensionality in a standard dynamic programming techniques show the possible advantages of the method.  相似文献   

17.
The main purpose of this paper is to present a new mathematical programming formulation of the multiphase equilibrium problem along with a Newton-type algorithm for its solution. The approach pursued relies on the Gibbs free energy function and geometric programming duality. The problem arised in connection with a real-life problem in oil reservoir engineering. The presentation of the model is based on a detailed mathematical analysis of the multiphase equilibrium problem. The computational results reported are obtained using data systems from oil reservoir engineering.  相似文献   

18.
In this paper, a polymorphic uncertain nonlinear programming (PUNP) approach is developed to formulate the problem of maximizing the capacity in a system of V-belt driving with uncertainties. The constructed optimization model is found to consist of a nonlinear objective function and some nonlinear constraints with some parameters which are of uncertain nature. These uncertain parameters are interval parameters, random interval parameters, fuzzy parameters or fuzzy interval parameters. To find a robust solution of the problem, a deterministic equivalent formulation (DEF) is established for the polymorphic uncertain nonlinear programming model. For a given satisfaction level, this DEF turns out to be a nonlinear programming involving only interval parameters. A solution method, called a sampling based interactive method, is developed such that a robust solution of the original model with polymorphic uncertainties is obtained by using standard smooth optimization techniques. The proposed method is applied into a real-world design of V-belt driving, and the results indicate that both the PUNP approach and the developed algorithm are useful to the optimization problem with polymorphic uncertainty.  相似文献   

19.
Many New Product Development (NPD) projects are inherently complex, making effective management of the tasks, resources, and teams necessary to bring new products to market problematic. Frequently, managers of NPD projects are overwhelmed by complicating factors such as stochastic task times, ill-defined specifications, complex interrelationships between tasks, and information dependencies. Recently, an alternative project management tool called the Design Structure Matrix (DSM) that explicitly takes into account the iterative nature of NPD projects has been proposed. In this paper, we first introduce a mixed-integer linear programming formulation for the numerical DSM. Then, we analyze the numerical DSM and establish the complexity of this class of problems. Finally, numerical analysis of the DSM problem and heuristic approaches is presented that shows that relatively good solutions can be easily obtained, thereby offering managers an efficient alternative solution approach to the original DSM problem.  相似文献   

20.
In this paper, a multiple period replenishment problem based on (s, S) policy is investigated for a supply chain (SC) comprising one retailer and one manufacturer with uncertain demand. Novel mixed-integer linear programming (MILP) models are developed for centralised and decentralised decision-making modes using two-stage stochastic programming. To compare these decision-making modes, a Monte Carlo simulation is applied to the optimization models’ policies. To deal with demand uncertainty, scenarios are generated using Latin Hypercube Sampling method and their number is reduced by a scenario reduction technique. In large test problems, where CPLEX solver is not able to reach an optimal solution in the centralised model, evolutionary strategies (ES) and imperialist competitive algorithm (ICA) are applied to find near optimal solutions. Sensitivity analysis is conducted to show the performance of the proposed mathematical models. Moreover, it is demonstrated that both ES and ICA provide acceptable solutions compared to the exact solutions of the MILP model. Finally, the main parameters affecting difference between profits of centralised and decentralised SCs are investigated using the simulation method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号