首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel silicon-stabilized calcium phosphate phase mixture possesses a characteristic phase composition of ∼ 75 wt.% silicon-stabilized α-tricalcium phosphate (Si-α-TCP) with the balance being calcium hydroxyapatite (HA) and traces of β-tricalcium phosphate (β-TCP). Variability in the phase composition has been shown to be caused by trace magnesium (Mg) contained in the calcium nitrate tetrahydrate used to prepare the sol gel. Mg contents between 250 and 300 ppm are sufficient to form significant quantities of β-TCP at the expense of the Si-α-TCP phase.  相似文献   

2.
Bioactive ceramics attracts much attention as materials for bone implants, because of their high biocompatibility. For example, hydroxyapatite (HA) has bone-bonding ability through a bone-like apatite layer in body environment and β-tricalcium phosphate (β-TCP) has a high bioresorbability in body environment. In addition, HA/β-TCP composites has the characteristics of both HA and TCP. However, it is difficult to sinter the composite, so that MgO has been used as a sintering agent. In the present study, effects of MgO addition on sintering calcium phosphate ceramics and composites were investigated. In order to evaluate the effect of MgO on the composites, HA, HA/β-TCP(30wt%), and HA/β-TCP(50wt%) with 1wt% MgO were prepared and characterized. To clarify the role of MgO on sintering of calcium phosphate ceramics, HA, β-TCP, and α-TCP with different TCP content (0, 1, 2, 3, 4, and 5 wt%) were also prepared. The results suggest that MgO addition densified HA/β-TCP composites and gave higher strength composites. The results of monolithic calcium phosphate ceramics indicated MgO addition was effective on β-TCP and α-TCP, not on HA. The maximum content of Ca atom in β-TCP displaced with Mg atoms in MgO might be 24 atm%.  相似文献   

3.
Spherical Ca-deficient hydroxyapatite (HA) granules are expected to be useful drug carriers in bony sites because of their bone regeneration and adsorption ability. In order to control drug loading and release ability of the granules, a controlled surface microstructure was constructed. Spherical Ca-deficient granules composed of micron-sized rod-shaped particles were prepared by hydrothermal treatment of α-tricalcium phosphate (α-TCP) granules, and then, submicron HA particles were precipitated on the obtained granules by immersion in a supersaturated calcium phosphate (CP) solution. When bovine serum albumin was used as a drug model, precipitation of submicron particles causes the loading capability to increase and the release rate to decrease. The spherical Ca-deficient HA granules with the controlled surface microstructure are expected to be useful drug carriers that can act as scaffolds for bone repair.  相似文献   

4.
以磷灰石-硅灰石玻璃陶瓷(AW)粉和β-磷酸三钙(β-TCP)粉为原料. 以硬脂酸为致孔剂. 经模压成型、1170℃烧结制备磷灰石-硅灰石/β-磷酸三钙复合多孔支架材料(AW/βTCP). 采用X射线衍射(XRD)、扫描电镜(SEM)、能谱(EDS)、诱导耦合等离子体原子发射光谱(ICP-AES)等方法分析支架的晶相组成、显微结构、物理性能、生物活性和降解性. 将大鼠骨髓间充质干细胞(rMSCs)与支架体外复合培养评价支架的生物相容性. 结果表明: 所制备的AW/β-TCP支架材料的抗压强度达14.3MPa. 孔隙率达66.9%. 孔径为100~700μm. 具有良好的生物相容性、生物活性和降解性. 可作为骨组织工程支架的候选材料.  相似文献   

5.
To develop a novel degradable poly (L-lactic acid)/β-tricalcium phosphate (PLLA/β-TCP) bioactive materials for bone tissueengineering, β-TCP powder was produced by a new wet process. Porous scaffolds were prepared by three steps, i.e. solventcasting, compression molding and leaching stage. Factors influencing the compressive strength and the degradation behaviorof the porous scaffold, e.g. weight fraction of pore forming agent-sodium chloride (NaCl), weight ratio of PLLA: β-TCP,the particle size of β-TCP and the porosity, were discussed in details. Rat marrow stromal cells (RMSC) were incorporatedinto the composite by tissue engineering approach. Biological and osteogenesis potential of the composite scaffold weredetermined with MTT assay, alkaline phosphatase (ALP) activity and bone osteocalcin (OCN) content evaluation. Resultsshow that PLLA/β-TCP bioactive porous scaffold has good mechanical and pore structure with adjustable compressive strengthneeded for surgery. RMSCs seeding on porous PLLA/  相似文献   

6.
Two kinds of calcium phosphate ceramic (CPC) granules of high porosity (50 ± 5%) and improved (for such materials) compressive strength (10–25 MPa) consisted of hydroxyapatite (PHA) and a mixture of hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) in 60 HA/40 β-TCP composition (PCPC) were developed. A comparative study of in vivo behavior of the materials implanted into an almost unloaded (greater trochanter of femur) and loaded (distal methaphysis of femur) zones in the skeleton of rabbits was performed. Significant activating influence of loading on the processes of new bone formation and reconstruction in macropores of both materials during all periods of implantation (up to 6 months) was observed. The role of relevant cells in the processes in the unsoluble PHA and the degradable PCPC (in which the processes was observed to intensify due to dissolution of the material) was studied and is discussed. Great disturbance in pore structure of the BCPC was revealed in more late periods of implantation. After 6 months, presence of large composite fragments located in intertrabecula spaces of greater trochanter was a characteristic feature of the PCPC crushing. The developed CPC materials seems to have good perspective for using in bone defect plasty in some loaded areas of the skeleton.  相似文献   

7.
A model system for the precipitation of hydroxyapatite (HA) from saturated solutions at basic pH was utilized to investigate the effects of V, Co, and Cu ions on crystallography and stoichiometry of the produced apatites. X-ray diffraction (XRD) was applied to analyze phase composition and crystallinity of powders obtained with different metal ion concentrations and annealed at different sintering temperatures. This procedure used the temperature-dependent phase transitions and decompositions of calcium phosphates to analyze the particular influences of the metal ions on apatite mineralization. Comparative XRD measurements showed that all metal ion species reduced crystallinity and crystallite size of the produced apatites. Furthermore the transformation of amorphous calcium phosphate (ACP) to HA was partially inhibited, as was deduced from the formation of α-tricalcium phosphate (α-TCP) peaks in XRD patterns of the heated powders as well as from the reduced intensity of the OH stretch vibration in FTIR spectra. The thermally induced formation of β-TCP indicated a significantly reduced Ca/P ratio as compared to stoichiometric HA. This effect was more pronounced with rising metal ion content. In addition, the appearance of metal oxides in the XRD patterns of samples heated to higher temperatures indicated the incorporation of metal ions in the precipitated apatites. Peak shifts showed that both the apatitic as well as the β-TCP phase apparently had incorporated metal ions.  相似文献   

8.
针对常规马弗炉烧结钙磷生物陶瓷温度高、烧结时间长,制品晶粒粗、强度和生物学活性难于同时提高的问题,采用微波等离子体新技术烧结了多孔HA/β-TCP双相生物陶瓷。实验结果显示,和常规马弗炉烧结法相比,微波等离子体烧结可在极短的加热时间内,制得线收缩率较大,晶粒尺寸小,抗压强度更大的多孔HA/β-TCP双相生物陶瓷。通过模拟体液的浸泡实验发现,其类骨磷灰石形成量也明显多于常规马弗炉烧结。这预示微波等离子体烧结是一种既能提高钙磷材料的力学强度,同时又可能增加其生物学活性的新烧结方法。  相似文献   

9.
《Advanced Powder Technology》2017,28(4):1154-1158
The ready availability and the low cost of oyster shells, which is composed predominantly of calcium carbonate with rare impurities, along with natural wastes are attractive features for converting the biological material into hydroxyapatite (HA) powders for biomedical applications. The HA powder was synthesized using oyster shell powders and dicalcium phosphate dihydrate (CaHPO4·2H2O, DCPD) through ball milling and subsequently heat treatment. The HA was initiated through sintering the 1-h milled sample at 1000 °C for 1 h, while pure HA phase is formed after sintering the 10-h milled sample. The as-prepared samples, obtained after 5 or 10 h of milling and then heat-treating at 1000 °C for 1 h, contain the phase of β-tricalcium phosphate (β-TCP). Moreover, the result of FTIR analysis showed that the as-prepared HA sample is A- and B-type carbonate-containing calcium phosphates. The as-synthesize HA powder containing trace elements Mg and Sr exhibited good crystallinity (96.3%) and high phase-purity.  相似文献   

10.
为了模拟天然骨组织的结构和成分, 以羟基磷灰石(HA)为钙磷源, 以壳聚糖(CS)为大分子基质材料, 在酸性环境中形成均相溶液, 通过Sol-gel相转变矿化方法和陈化处理, 原位构建了纳米HA/CS复合多孔支架材料, 研究了共沉积时体系的pH值和陈化时间对支架压缩强度、晶相组成及形貌等的影响。结果表明体系pH为10和11时, 支架的力学强度远高于未矿化壳聚糖支架强度, 但是随着体系pH的升高强度逐渐下降。XRD分析结果表明陈化处理有利于磷酸钙盐向HA转化, 随着陈化时间的延长, 纳米HA沿c轴择优生长。SEM观察显示支架材料具有相互贯穿的多孔结构, 纳米级的短棒状或颗粒状HA晶体颗粒均匀分散在孔壁上, 随着陈化处理以及陈化时间的延长, 形成致密的纳米无机/有机均匀复合体。这种快速深度矿化方法为骨支架材料的制备提供了新思路。   相似文献   

11.
This study aimed at preparing and studying the properties of nanoparticles of calcium phosphate (nCaP) with Ca/P ratios ranging from 1.0 to 1.67 using a spray-drying technique. Micro-structural analyses suggested that the nCaPs with Ca/P ratios of 1.67 to 1.33 were nano-sized amorphous calcium phosphate (ACP) containing varying amounts of acid phosphate and carbonate. The nCaP with Ca/P ratio of 1 contained only nano-sized low crystalline dicalcium phosphate (DCP). BET measurements of the nCaPs showed specific surface areas of (12 ± 2 to 50 ± 1) m(2)/g, corresponding to estimated equivalent spherical diameters of (38 to 172) nm. However, dynamic light scattering measurements revealed much larger particles of (380 ± 49 to 768 ± 111) nm, owing to agglomeration of the smaller primary nano particles as revealed by Scanning Electron Microscopy (SEM). Thermodynamic solubility measurements showed that the nCaPs with Ca/P ratio of 1.33 - 1.67 all have similar solubility behavior. The materials were more soluble than the crystalline hydroxyapatite (HA) at pH greater than about 4.7, and more soluble than β-tricalcium phosphate (β-TCP), octacalcium phosphate (OCP) and DCP at pH above 5.5. Their solubility approached that of α-tricalcium phosphate (α-TCP) at about pH 7. These nCaPs, which cannot be readily prepared by other currently available methods for nanoparticle preparation, have potential biomedical applications.  相似文献   

12.
Biphasic calcium phosphate ceramics (BCP) comprising a mix of non-resorbable hydroxyapatite (HA) and resorbable β-tricalcium phosphate (β-TCP) are particularly suitable materials for synthetic bone substitute applications. In this study, HA synthesised by solid state reaction was mechanically mixed with β-TCP, then sintered to form a suite of BCP materials with a wide range of HA/β-TCP phase content ratios. The influence of sintering temperature and composition on the HA thermal stability was quantified by X-ray diffraction (XRD). The pre-sinter β-TCP content was found to strongly affect the post-sinter HA/β-TCP ratio by promoting the thermal decomposition of HA to β-TCP, even at sintering temperatures as low as 850 °C. For BCP material with pre-sinter HA/β-TCP = 40/60 wt%, approximately 80% of the HA decomposed to β-TCP during sintering at 1000 °C. Furthermore, the HA content appeared to influence the reverse transformation of α-TCP to β-TCP expected upon gradual cooling from sintering temperatures greater than 1125 °C. Because the HA/β-TCP ratio dominantly determines the rate and extent of BCP resorption in vivo, the possible thermal decomposition of HA during BCP synthesis must be considered, particularly if high temperature treatments are involved.  相似文献   

13.
Carbonate apatite (CO3Ap) foam with an interconnected porous structure is highly attractive as a scaffold for bone replacement. In this study, arbitrarily shaped CO3Ap foam was formed from α-tricalcium phosphate (α-TCP) foam granules via a two-step process involving treatment with acidic calcium phosphate solution followed by hydrothermal treatment with NaHCO3. The treatment with acidic calcium phosphate solution, which is key to fabricating arbitrarily shaped CO3Ap foam, enables dicalcium hydrogen phosphate dihydrate (DCPD) crystals to form on the α-TCP foam granules. The generated DCPD crystals cause the α-TCP granules to interlock with each other, inducing an α-TCP/DCPD foam. The interlocking structure containing DCPD crystals can survive hydrothermal treatment with NaHCO3. The arbitrarily shaped CO3Ap foam was fabricated from the α-TCP/DCPD foam via hydrothermal treatment at 200?°C for 24?h in the presence of a large amount of NaHCO3.  相似文献   

14.
本研究采用球磨对磷酸钙骨水泥(CPC)起始粉末进行机械活化处理, 以期改善CPC力学性能, 并探讨了其影响机理。采用激光粒度仪、比表面积测量仪和X射线衍射仪(XRD)表征球磨后的CPC粉末(Ball milling CPC, BCPC)。利用发泡法制备多孔BCPC支架, 采用万能力学试验机、XRD和扫描电子显微镜(SEM)表征多孔BCPC支架。结果显示, 球磨后的BCPC粉末平均粒径减小, 比表面积增大, 表观密度、堆积密度及紧密密度减小。BCPC支架孔隙率为(77.98 ± 0.58)%, 抗压强度为(4.11 ± 0.46) MPa, 相比CPC支架的(64.23 ± 2.32)%和(1.99 ± 0.43) MPa有显著提高。SEM结果显示BCPC支架具有数微米和数百微米的两种孔隙结构。XRD结果表明机械活化作用降低了DCPD、α-TCP、CaCO3和HA的晶粒尺寸和结晶度, 促使DCPD向DCPA转化, 促进了各相磷酸钙盐的水化和HA的沉积, 提高了BCPC支架的力学性能, 为增强CaP基多孔材料的力学性能和扩展其临床应用提供了新途径。  相似文献   

15.
β-tricalcium phosphate (β-TCP) and biphasic calcium phosphate powders (BCP), consisting of hydroxyapatite (HA) and β-TCP, were synthesized by thermal decomposition of precursor powders obtained from neutralization method. The precursor powders with a Ca/P molar ratio of 1.5 were prepared by adding an orthophosphoric acid (H3PO4) solution to an aqueous suspension containing calcium hydroxide (Ca(OH)2). Mixing was carried out by vigorous stirring and under sonochemical irradiation at 50 kHz, respectively. Glycerol and D-glucose were added to evaluate their influence on the precipitation of the resulting calcium phosphate powders. After calcination at 1000°C for 3 h BCP nanopowders of various HA/β-TCP ratio were obtained.  相似文献   

16.
A novel biodegradable polymer–ceramic nanocomposite which consisted of gelatin (Gel), chitosan (CS), and calcium phosphate (CaP) nanoparticles was prepared based on in situ preparation method. The fabricated biocomposites were characterized by FTIR, X-ray diffraction (XRD), transmission electron microscopy (TEM) as well as scanning electron microscope with X-ray elemental analysis (SEM-EDX). The characterization results confirmed that the crystalline calcium phosphate nanoparticles were mineralized in polymeric matrix and the interaction between Ca2+ in calcium phosphate and functional groups in polymers molecular chains was formed. XRD result showed that in addition to hydroxyapatite (HA), Brushite (BR) and tricalcium phosphate (β-TCP) particles also were formed due to lack of complete penetration of the basic solution into the polymeric matrix. However, SEM image indicated that the polymeric matrix has the controlling role in the particle size of calcium phosphate. The size of particles in three component composites was about 100 nm while in two component composites proved to be more in μm size. TEM observation supported SEM results and showed that the three component composites have calcium phosphate nanoparticles. The elastic modulus and compressive strength of the composites were also improved by the employment of gelatin and chitosan together, which can make them more beneficial for surgical applications.  相似文献   

17.
Ideally, ceramics used in the repair of bone defects need to be resorbed and replaced by newly formed bone in vivo. Tricalcium phosphate (TCP) has been widely used in association with hydroxyapatite (HA) due to its higher resorption kinetics when compared with HA alone. The aim of our study was to quantitatively investigate the effect of α-tricalcium phosphate (α-TCP) on human osteoblasts' adhesion and proliferation. Ceramic samples with variable concentrations of α-TCP and HA were produced by the calcination of calcium-deficient and stoichiometric HA. Human osteoblasts were cultured on the materials in three distinct experiments with different concentrations of cells. Numerical evaluation of cellular growth along time in culture was performed for each condition. The quantity of cells seeded onto the ceramics seems to influence the osteoblast behavior once proliferation was lower when more cells were seeded onto the samples. However, a smaller content of α-TCP in relation to that of HA did not significantly modify the specific proliferation rates of the osteoblasts. Only after a long time in culture, the increasing of the α-TCP content seems to change the cells' behavior.  相似文献   

18.
Three-dimensional honeycomb-structured magnesium (Mg) scaffolds with interconnected pores of accurately controlled pore size and porosity were fabricated by laser perforation technique. Biodegradable and bioactive β-tricalcium phosphate (β-TCP) coatings were prepared on the porous Mg to further improve its biocompatibility, and the biodegradation mechanism was simply evaluated in vitro. It was found that the mechanical properties of this type of porous Mg significantly depended on its porosity. Elastic modulus and compressive strength similar to human bones could be obtained for the porous Mg with porosity of 42.6%-51%. It was observed that the human osteosarcoma cells (UMR106) were well adhered and proliferated on the surface of the β-TCP coated porous Mg, which indicates that the β-TCP coated porous Mg is promising to be a bone tissue engineering scaffold material.  相似文献   

19.
In this paper, preparation of nano-biphasic calcium phosphate (nBCP), mechanical behavior and load-bearing of poly (lactide-co-glycolide) (PLGA) and PLGA/nBCP are presented. The nBCP with composition of 63/37 (w/w) HA/β-TCP (hydroxyapatite/β-tricalcium phosphate) was produced by heating of bovine bone at 700℃. Composite scaffolds were made by using PLGA matrix and 10-50 wt% nBCP powders as reinforcement material. All scaffolds were prepared by thermally induced solid-liquid phase separation (TIPS) at -60℃ under 4 Pa (0.04 mbar) vacuum. The results of elastic modulus testing were adjusted with Ishai-Cohen and Narkis models for rigid polymeric matrix and compared to each other. PLGA/nBCP scaffolds with 30 wt% nBCP showed the highest value of yield strength among the scaffolds. In addition, it was found that by increasing the nBCP in scaffolds to 50 wt%, the modulus of elasticity was highly enhanced. However, the optimum value of yield strength was obtained at 30 wt% nBCP, and the agglomeration of reinforcing particles at higher percentages caused a reduction in yield strength. It is clear that the elastic modulus of matrix has the significant role in elastic modulus of scaffolds, as also the size of the filler particles in the matrix.  相似文献   

20.
采用微细α-磷酸三钙(α-TCP)粉料、辅助料与冻干牛骨形态发生蛋白(BMP)预先固相混合制备了新型磷酸钙(CPC)/BMP复合生物骨水泥.通过水化、凝固性能研究优化了配料成分、调和液和促凝剂组成;通过大鼠肌袋种植实验研究了骨水泥的异位成骨性能.结果表明:以α-TCP:CaHPO4:CaO(0.95:0.025:0.025)为固相配料,以0.25mol/LNaH2PO4/Na2HPO4混合液([P]T=0.5mol/L)作为调合液可制备性能优异的骨水泥材料,骨水泥初凝时间为6min,终凝时间为30min,固化强度达33MPa,达到临床手术的要求;α-TCP粉料粒度对骨水泥凝固性能影响显著,实验选用α-TCP粉料粒径d50为1.3μm;骨水泥在Hank’s溶液中浸泡5天抗压强度可达最大值;骨水泥块经浸泡后内部生成针状羟基磷灰石晶体的网状结构.新型CPC/BMP复合骨水泥异位成骨作用明显,4周即能快速形成板层骨结构,证明该新型复合材料具有较强的诱导成骨活性.该生物活性骨水泥复合材料可望成为一类新型组织工程骨修复材料.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号