首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
为了揭示非共沸混合工质在冷凝器内的换热特性,探明非共沸混合工质组分对制冷剂和换热流体间沿程温度的影响,通过建立冷凝器换热模型,对不同沸点差的二元环保型非共沸混合工质进行了理论分析.结果表明:由于非共沸混合工质比焓值与温度的非线性关系,换热流体间的沿程传热温差出现极值点;混合工质中富含低沸点组分时,冷凝器内部存在最小传热温差;反之,存在最大传热温差;混合工质沸点差增加,滑移温度的限制条件之差增大,窄点现象增强.  相似文献   

2.
蒸发器中非共沸混合工质的换热特性   总被引:3,自引:0,他引:3  
朱强 《制冷学报》2004,25(1):44-48
为了阐明非共沸混合工质在制冷、空调系统蒸发器中的换热过程,以及混合工质蒸发时的温度滑移现象为工程实际带来的某些特殊性,运用传热及热力学原理进行了相应的理论分析,发现非共沸混合工质的蒸发过程中蒸发介质存在极限流量的现象,并得到此类工质在可用能角度相比纯工质具有节能效果的结论(一般情况下,相对可用能损失减少40%~55%),最后将理论分析结论应用于几种常用的混合工质上,如R407c、R405a和R414b,并预测了这些工质在实际使用中的极限流量和可用能损失情况.  相似文献   

3.
本文提出了计算非共沸混合工质水平管内在环状流和波状分层流型下凝结换热系数的折算方法。推导出了折算因子的准则式,对影响非共沸工质凝结换热的主要因素作了分析。  相似文献   

4.
陈然  刘强  蒙冬玉 《发电技术》2020,41(2):190-197
有机朗肯循环(organic Rankine cycle,ORC)是利用中低温地热能(< 150℃)发电的主要途径,在实际运行中,非共沸工质往往会冷凝至过冷状态。分析了冷凝过冷度对非共沸工质ORC热力性能的影响,建立了ORC、内回热(internal heat exchanger,IHE)ORC的热力学模型,以净输出功最大为目标函数优化了工质的蒸发压力,并开展了系统的㶲分析。结果表明:过冷度影响了工质与冷源换热流体间的温度匹配特性,受夹点温差的限制,随着过冷度的增加,工质的冷凝压力上升;过冷度亦改变了预热器和蒸发器的热量分摊,随着过冷度的增加,最佳蒸发压力亦上升。混合工质异丁烷/异戊烷的质量配比为0.4:0.6时,净输出功受过冷度的影响最大,当过冷度为2℃时,净输出功下降了4.36%。IHE回收膨胀机排汽的余热,提高了预热器入口温度,可提高过冷ORC系统净输出功0.55%。过冷度增大了冷凝器的㶲损失;采用内回热冷凝器的㶲损失降低了24.7%。  相似文献   

5.
分析了非共沸混合工质流动沸腾过程与纯工质不同的特性,使用相平衡和热焓计算相结合的方法,研究了非共沸混合工质流动过程中的热物性参数,状态参数和流动参数的计算获取,给出了详细的计算步骤及相关计算式,为准确获取非共沸混合工质在流道中各局部点的参数提供了一种切实可行的计算方法。  相似文献   

6.
根据两相流动换热理论,建立纯制冷剂和非共沸混合制冷剂R407C在微肋管内冷凝的稳态分布参数模型。在此基础上用分布参数法求解控制方程,得出在不同流量、不同干度下,R22和R407C在微肋管内的冷凝传热性能,同时还得出它们在微肋管内流动的压降。本模型可用于分析R22及R407C在系统中的整体换热性能,为冷凝器的优化设计、制冷系统的匹配提供依据。  相似文献   

7.
以非共沸混合工质在蒸发器中沿程温度分布变化所导致传热不可逆熵增为目标函数,建立混合工质与冷媒水在蒸发器中的稳态换热模型;以换热温差最小值为基准,编程分析计算,得出二元混合工质R290/R600在不同组分比下的相对熵增,选取其中最小值对应组分比为最佳组分比.  相似文献   

8.
自动复叠制冷循环系统结构简单、运行可靠。该循环使用非共沸混合制冷剂,其冷凝分离是否完全直接影响着循环制冷效率的高低。针对这一问题,设计一种新型多级冷凝过滤分离装置,并采用配有该装置的自动复叠制冷循环系统进行实验研究,结果表明该装置不仅实现了非共沸混合工质高、低沸点组元的高效分离,提高了系统的制冷效率和稳定性,而且结构简单、成本较低,具有极强的生产实用性。  相似文献   

9.
非共沸混合工质复叠制冷机是利用非共沸工质相变分离的原理进行制冷循环的一种新形式,具有高可靠性与长寿命的特点。该型循环制冷机只需要采用普通用压缩机,且冷冻润滑油由于在循环的前期分离阶段可以带回压缩机而无需改动,因此具有十分重要的意义和重大的经济价值。本文以PR方程在二元相平衡状态下进行非共沸混合工质物质参数计算,使用计算机模拟了该循环在理想状态下的循环过程。该项研究为实际设计制冷机在工质选择,循环参数设计及相关方面奠定了基础。  相似文献   

10.
实验研究了近共沸制冷工质R404A与非共沸制冷工质R407C在水平强化换热管管外的凝结换热性能。采用"Wilson图解法"对实验数据进行处理。结果表明:对于R404A和R407C,强化管外的凝结换热系数随着壁面过冷度的增加而增大,呈现出与纯工质冷凝时不同的变化趋势,这主要是近共沸或非共沸工质凝结过程中,某些组分的凝结会遇到其它组分的凝结气膜热阻所造成的;随着过冷度增加,易挥发组分开始凝结,气膜变薄,冷凝传热系数增大。R407C在强化换热管管外的凝结换热系数比R404A要小70%左右,这是由于R407C的温度滑移较R404A要大,管外形成的凝结扩散气膜造成的影响更大。R407C在高热流密度工况下的换热效果提升明显,故应尽量工作在高热流密度区域。  相似文献   

11.
Detailed 2D CFD calculations for vapour flow field and rate of condensation are carried out for a geometry similar to a real shell-and-tube condenser with 100 tubes, with condensation on the shell-side. The differences in vapour flow behaviour are investigated for pure R22 and for a binary mixture of R32 and R134a, which has a gliding temperature difference of 5.5 K. It is shown that, the flow field for a zeotropic mixture is significantly different from that for a pure fluid. The nature of the mixture flow causes the vapour and condensate to flow counter-currently in part of the condenser. Adjustments of the inlet design turn out to influence the rate of heat transfer by up to 24% for the conditions tested, with greater influence on heat transfer for lower driving forces.  相似文献   

12.
The condensation of pure HFC134a and different zeotropic mixtures with pure HFC134a and HFC23 on the outside of a bundle of smooth tubes was studied. The local heat transfer coefficient for each row was experimentally determined using a test section composed by a 13×3 staggered bundle of smooth copper tubes, measuring cooling water temperature in the inlet and the outlet of each tube, and measuring the vapour temperature along the bundle. All data were taken at the inlet vapour temperature of 40°C with a wall subcooling ranging from 4 to 26 K. The heat flux was varied from 5 to 30 kW/m2 and the cooling water flow rate from 120 to 300 l/h for each tube. The visualisation of the HFC134a condensate flow by means of transparent glass tubes reveals specific flow patterns and explains the difference between the measured values of the heat transfer coefficient and the calculated values from Nusselt's theory. On the other hand, the experimental heat transfer data with the binary mixtures HFC23-HFC134a show the important effects of temperature glide and the strong decrease of the heat transfer coefficient in comparison with the pure HFC134a data. The measured values with the different zeotropic mixtures were compared with the data calculated with the classical condensation model based on the equilibrium model. An improvement of this model is proposed.  相似文献   

13.
Experiments were conducted to obtain row-by-row heat and mass transfer data during condensation of downward-flowing zeotropic mixture R123/R134a in a staggered bundle of horizontal low-finned tubes. The vapor temperature and the mass fraction of R134a at the tube bundle inlet were about 50°C and 14%, respectively. The refrigerant mass velocity ranged from 9 to 34 kg m−2 s−1, and the condensation temperature difference from 1.9 to 12 K. Four kinds of low-finned tubes with different fin geometry were tested. The highest heat transfer coefficient was obtained with a tube which showed the highest performance for R123. However, the diference among the tubes was much smaller for the mixture than for R123. The heat transfer coefficient and the vapor-phase mass transfer coefficient decreased significantly with decreasing mass velocity. The mass transfer coefficient increased with condensation temperature difference, which was due to the effect of suction associated with condensation. On the basis of the analogy between heat and mass transfer, a dimensionless correlation of the mass transfer coefficient was developed for each tube.  相似文献   

14.
This study presents a prediction model for the condensation heat transfer characteristics of binary zeotropic refrigerant mixtures inside horizontal smooth tubes. In this model, both the vapor-side and liquid-side mass transfers are considered, and the high flux mass transfer correction factor is used to evaluate mass transfer coefficients. The model was applied to the binary zeotropic refrigerant mixture R134a/R123, which has a large temperature glide. Calculation results showed that the heat transfer degradation of R134a/R123 due to gradients in the mass fraction and temperature is considerable, and depends on the mass fraction of the more volatile component and the vapor mass quality of the refrigerant mixture. By comparison with experimental data, incorporating the present finite mass transfer model for the liquid film side into the calculation algorithm was shown to reasonably well predict the condensation heat transfer coefficients of binary refrigerant mixtures with the mean deviation of about 10.3%. In the present calculations, however, it was also found that the high flux mass transfer correction factor had only a slight effect on the condensation heat transfer.  相似文献   

15.
Detailed calculations of condensation outside a column of horizontal smooth tubes have been carried out in order to investigate the influence of mass transfer resistance for a zeotropic refrigerant mixture. Diffusive transport is calculated locally in both phases. Calculation results show that mass transfer resistance in the gas phase reduces heat transfer by 10–20% for a binary mixture with a glide similar to that of R407C.The decrease in heat transfer due to poor mixing in the condensate is from 15 to 65% for the conditions investigated; the lower the duty, the greater the decrease. Results show that if assuming mixing in the condensate by diffusion only, the degrees of mixing and the duty dependency are similar to results in earlier work where calculations were matched to experimental data. Diffusion is likely to be the dominant mixing mechanism in the condensate, and the mixing is poor under certain conditions, which might explain the drop in condenser performance for some heat pump applications.  相似文献   

16.
在空调用翅片管冷凝器的几何结构尺寸相同,空气的进口状态和流量相同的条件下,采用计算机仿真技术,研究了支路数、管排数对翅片管冷凝器的传热与流动特性的影响,结果表明:随着支路数的增大,压降随之减小,最大值为2个支路时的33.8kPa,最小值为6个支路时,仅为0.9kPa;空气与制冷剂间传热温差增大,总传热系数减小,冷凝器的换热量递减,最大值比最小值大32.1%。随着排数的增多,压降增大,4排管的压降是1排管的4.3倍;空气侧换热系数与制冷剂侧换热系数的变化呈相反趋势,但传热温差增大,换热量也增大,4排管的换热量是1排管的2.45倍。  相似文献   

17.
This paper introduces the concept of separation of two-phase flow in condensers and discusses its possible application of enhancing the heat transfer performance by capitalizing on the high local heat transfer coefficient of vapor flow. The benefit of vapor–liquid refrigerant separation and the reason why it will improve the condenser performance are explained. Numerical studies are performed on an R-134a microchannel condenser. Model predicts that at the same mass flow rate, the exit temperature is lower by 1.3 K in the separation condenser than in the baseline condenser while the difference of pressure drop remains within 2%. 6.1% more flow rate of condensate is predicted in the separation condenser as another comparison criterion. In addition, the trade-off between high quality and low mass flux for the vapor path downstream of the separation header is investigated by the model and results are presented. Modeling is conducted with pre-assumed separation efficiency in the header. The real value requires further investigation.  相似文献   

18.
A new program was developed to analyze the heat transfer characteristics of fin and tube evaporators that use a zeotropic mixture refrigerant, R-407C, as the working fluid. The calculation algorithm is based on EVSIM (NIST), but a tube is segmented into several sections to provide a base unit for the calculations in this study. Therefore, two-dimensional air mal-distribution in the tube-length (horizontal) and vertical directions of the evaporator can be considered. The temperature gradient in the flow direction is traced using a discrete pattern to simulate the continuous variation found in actual evaporators. To validate the simulation results, 45 test cases in a real evaporator were performed with two different refrigerant flow path configurations using R-22 and R-407C refrigerants. The deviation between the simulations and test data was a maximum of 5.4%, and the trends were similar. The local heat transfer predictions were verified by comparing the numerical and test wall temperatures along the refrigerant flow path. Local temperature difference and the heat transfer contributions from each row are also analyzed along refrigerant flow path. And more, the impact of air mal-distribution is studied with two-dimensional four different types of velocity profiles and the significant difference in heat transfer is analyzed. The program developed in this study will be a useful tool to know all of information related with heat and mass transfer at any local point and can be used for improving the efficiency of zeotropic mixture refrigerant evaporators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号