首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 859 毫秒
1.
KBaPO4:Tb3+材料制备及其发光特性   总被引:2,自引:0,他引:2  
采用高温固相法合成了KBaPO4:Tb3+绿色发光荧光粉,并研究了材料的发光性质.KBaPO4:Tb3+材料呈多峰发射,发射峰位于437、490、545、586和622 nm,分别对应Tb3+的5D3→7F4和5D4→7FJ=6,5,4,3跃迁发射,主峰为545 nm;监测545 nm发射峰,所得激发光谱由4f 7-5d1的宽带吸收(200~330 nm)和4f-4f电子吸收(330~400 nm)组成,主峰为380 nm.研究了Tb3+掺杂浓度,电荷补偿剂Li+、Na+、K+和Cl-,及敏化剂Ce3+对KBaPO4:Tb3+材料发射强度的影响.结果显示,调节激活剂浓度、添加电荷补偿剂或敏化剂均可在很大程度上提高材料的发射强度.上述结果表明KBaPO4:Tb3+材料是一种很好的近紫外光激发型高效绿色发光荧光粉.  相似文献   

2.
新型黄绿色发光材料Sr2MgSi3O9:Ce3+,Tb3+的合成及光谱分析   总被引:1,自引:0,他引:1  
采用凝胶-燃烧法在活性炭弱还原气氛下成功合成了新型荧光粉Sr2MgSi3O9 :Tb3+、Sr2MgSi3O9:Ce3+,Tb3+,用X射线粉末衍射仪(XRD)、扫描电镜(SEM)、荧光分光光度计等对合成产物进行了分析和表征.结果表明,所合成的发光材料与Sr2MgSi2O7具有相似的晶体结构,同属四方晶系.样品一次颗粒近似球形,粒径在100nm左右.Sr2MgSi3O9:Tb3+的激发光谱为一位于249nm的宽带,发射光谱主要由473、491、547、585nm等一系列发射峰组成,其中473nm(5D3→<7F3)为主发射峰,547nm(5D4→7F5)为次发射峰;样品Sr1.955MgSi3O9:Tb3+0.04,Ce3+0.005的激发光谱由峰值分别位于249和335nm的双激发带组成,其中后者为主激发带.在335nm激发下,其发射光谱由两部分组成,其中400nm附近的带状发射对应于Ce3+的发射,而491、547、588nm处的发射峰归属为Tb3+的5+D4→7FJ(J=6,5,4)跃迁发射,最强峰位于547nm,对应Tb3+的5D4→7F5跃迁.此外,探讨了Ce3+掺杂量对样品发光亮度的影响,发现Ce3+可以把能量传递给Tb3+,对Tb3+起到敏化作用.  相似文献   

3.
采用高温固相法合成了绿色荧光粉Zn2Ca(PO4)2:Tb3+,测定了该荧光粉的XRD图谱、激发光谱及发射光谱。XRD图谱表明在高温还原气氛下合成了纯相的荧光粉Zn2Ca(PO4)2:Tb3+。该荧光粉的激发谱位于340~400nm。在紫外激发下主要发射峰位于490、544、584、622nm,对应于Tb3+的5D4→7F6、5D4→7F5、5D4→7F4、5D4→7F3的特征发射。考察了Tb3+的掺杂浓度对样品发光效率的影响,分析了Tb3+的544nm发射的自身浓度猝灭机理并探讨了敏化剂Ce3+离子的加入对荧光粉发光的影响。此绿色荧光粉Zn2Ca(PO4)2:Tb3+是一种很有潜力的适于UVLED管芯激发的发光粉。  相似文献   

4.
为研究三脚架型配体稀土配合物的组成、可能的配位状态及荧光性质,合成了三脚架型配体--2,2,2-胺三乙酰二苄胺(L)及其6个稀土配合物.通过红外光谱、核磁共振波谱、元素分析、差热-热重分析、摩尔电导率及荧光光谱等方法对L及其稀土配合物的组成及性质进行了表征.结果表明, L能够与稀土离子配位,生成n(RE)∶n(L)=1∶1的配合物;Tb(Ⅲ)配合物在紫外光激发下,在490nm、545nm、590nm、620nm附近出现强度不同的Tb3+特征荧光发射峰,分别归属于Tb3+的5D4→7F6、5D4 →7F5、5D4→7F4、5D4→7F3能级跃迁;而其Eu(Ⅲ)配合物的荧光发射微弱,其它配合物没有荧光发射.说明L的三重态能量与Tb3+最低激发态能级匹配较好,能起到较好的敏化作用,提高Tb3+的发光强度.  相似文献   

5.
采用共沉淀法制备Tb3+,Yb3+共掺杂Y(PO3)3上转换发光材料,通过X射线粉末衍射仪(XRD)、扫描电镜(SEM)、傅里叶红外光谱(FT-IR)和上转换荧光光谱仪(UPL)对制备产物的结构和性能进行表征分析.结果表明,所制备样品属于单斜晶系空间群为P21/c的Tb3+和Yb3+共掺杂Y(PO3)3晶体.在近红外光的激发下,所制备Y(PO3)3:x Tb3+,20%(摩尔分数,下同)Yb3+样品发射出Tb3+特征的蓝绿色光.Tb3+掺杂量直接影响着制备产物的上转换发光性能,当Tb3+掺杂量为2% ~10%时,Tb3+的5 D4→7 F6发射峰分裂为481 nm和491 nm两个发射峰;当掺杂量为5%~20%时,位于547 nm处绿光发射为最强发射峰;当Tb3+掺杂量高于20%时观察到浓度猝灭现象.Tb3+/Yb3+的掺杂量比例和近红外光激发功率密度对所制备样品的上转换发光性能也有明显影响.适当调节样品中Tb3+/Yb3+掺杂比例可实现对制备的Y(PO3)3:x Tb3+,20%Yb3+样品的上转换发射蓝绿光颜色的调控.对Y(PO3)3:Tb3+,Yb3+样品的上转换发光机理进行探索,其中属于Tb3+特征的5 D3→7 FJ(J=6,5,4)和5 D4→7 FJ(J=6,5,4,3)跃迁带发射分别属于三光子吸收和双光子吸收机制.  相似文献   

6.
以空心球表面负载的叔丁基过氧化氢为引发剂,通过反向原子转移自由基聚合制备了空心球-聚甲基丙烯酸甲酯杂化材料,以此为引发剂,以含有甲基丙烯酸甲酯的铽配合物为第二单体,通过原子转移自由基聚合制备了空心球-g-PMMA-b-Tb杂化材料,并用FT-IR、GPC、TG和荧光光谱等对产物进行了测试与分析。结果表明,PMMA在空心球表面的接枝率约为8%;溶液中形成的PMMA的-Mw为28800,分子量分布指数(PDI)为1.2;杂化材料在489 nm,545 nm,583 nm,621 nm左右出现了四组发射峰,分属于Tb3+的5D4→7F6、5D4→7F5、5D4→7F4和5D4→7F3跃迁;铽配合物已接枝到空心球表面,生成了具有发光性能的杂化材料。  相似文献   

7.
以氯化铈和氟化钠为原料制备铽掺杂的氟化铈纳米颗粒,采用水热法,在不同保温时间下制得3种样品。通过X-射线衍射仪(XRD)、扫描电子显微镜(SEM)、紫外-可见光谱仪(UV)、荧光光谱仪(PL)对样品进行表征。XRD分析结果表明:制备的CeF3:Tb3+纳米颗粒为六方晶系结构,SEM证实不同的保温时间,样品的形貌差别较大。在310nm的光激发下,350nm处宽而强的发射峰对应三价Ce3+离子的特征发射峰,位于540nm处来源于Tb3+离子的特征发射(5 D4-7F5),在482nm处的发射峰对应于Tb3+离子的5 D4-7F6的跃迁。  相似文献   

8.
采用高温固相法制备得到了新型磷酸镁基质荧光粉LiyMg2-x-yP2O7:xTb3+,利用红外光谱(FT-IR)和X射线衍射(XRD)等手段对产品进行了表征,研究了Tb3+、Li+掺杂量对其物相及发光强度的影响。结果表明:Tb3+的掺入对其产品物相有一定影响,Li+的掺杂对产品物相影响较小。Tb3+和Li+的最佳掺杂摩尔分数均为12%,Li+的掺入对其激发峰及发射峰位置基本没有影响,但能有效提高产品的发光强度。该荧光粉的最强激发峰位于波长371nm处,最强发射峰位于波长545nm处,为绿色发光,是良好的近紫外激发绿色发光材料。  相似文献   

9.
以无水乙醇为反应溶液,采用室温共沉淀制备了低温单斜相BiPO4∶Tb3+绿色荧光纳米材料,并进行高温烧结处理。利用X-射线衍射(XRD)、透射电镜(TEM)和荧光光谱分别对所得样品的相结构、形貌以及发光性能进行研究。结果表明:通过高温烧结,样品没有发生晶型转变,仍然保持单斜相结构和纳米颗粒形貌。同时,Tb3+离子作为绿色发光中心进入到BiPO4的晶格中取代Bi 3+的格位,在370nm激发下,观察到Tb3+离子的特征跃迁(5D4→7FJ,J=6~3),其中以5D4→7F5跃迁发射(543nm)为主;并考察了BiPO4∶Tb3+纳米晶发光强度随Tb3+掺杂量的变化关系,发现其淬灭浓度高达20mol%。  相似文献   

10.
采用高温固相法制备绿色荧光粉Y2GeO5∶Bi3+,Tb3+,利用X射线衍射仪、扫描电镜、激光粒度仪和光致发光光谱对其性能进行表征,并探讨Bi3+和Tb3+离子掺杂量对发光性能的影响。结果表明,掺杂Bi3+和Tb3+分别作为敏化剂和发光中心进入到Y2GeO5的晶格中,最佳掺杂量分别为1.2%、8%(摩尔分数);样品为类球形颗粒,其d50为6.39μm;峰值为314 nm的激发带由Bi3+离子、基质激发峰以及Tb3+的7F6→5D1复合而成;在314 nm波长激发下,发射光谱呈现峰值为373 nm宽带和位于430650 nm的多个锐利峰;Bi3+离子掺杂使5D4→7F5的发光强度提高3倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号