首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
强度和塑性是金属结构材料最重要的力学性能指标,金属高性能化的关键是在高强度水平下保证良好的塑性,然而两者往往不能兼顾。在众多强化方法中,晶粒细化长期以来被认为是强化金属最理想的手段,在传统晶粒尺寸范围,细化晶粒既可以显著提高材料的强度,又能改善材料的塑韧性。因此,近几十年来超细晶/纳米晶金属得到了广泛研究和发展,出现了以大塑性变形(SPD)、先进形变热处理(ATMP)技术为代表的超细晶制备方法,所得晶粒可以细化到亚微米或纳米尺度,金属性能大大提高。然而,大量研究证实当晶粒细化到亚微米或纳米尺度时金属强度提高但塑性显著下降,与传统的细晶强化规律不符。对此,国内外学者进行了很多研究,试图阐明其机理、揭示晶粒超细化导致塑性降低的物理本质。此外,由于细化晶粒方法受到塑性的限制,新的高强度水平下增强塑性的方法成为钢铁材料高性能化的研究热点。针对塑性下降的事实,为了进一步提高超细晶金属材料性能,研究者开展了许多增强塑性的工作,获得了较好的效果,但仍存在一些不足。关于金属晶粒超细化导致塑性降低的普遍共性现象,目前广泛认可的理论主要有晶界捕获(吸收)位错的动态回复理论、位错运动湮灭理论、高初始位错密度以及位错源缺失机制等。前三者都主要关注超细晶金属材料低(无)加工硬化能力,并将其归结为延伸率降低所致。主要是因为低(无)加工硬化使材料在变形早期发生塑性失稳或局部变形从而表现出低塑性。超细晶金属增塑研究主要体现在增塑方法和机理方面,目前,增塑方法主要有(1)形成纳米孪晶;(2)获得粗晶-细晶双峰组织;(3)利用相变诱发塑性/孪生诱发塑性(TRIP/TWIP)效应;(4)引入铁素体软相;(5)利用纳米第二相粒子等。这些增塑方法的主要机理是利用组织结构的改变提高超细晶金属的加工硬化能力以维持良好的均匀塑性变形以及利用组织相变提高塑性。本文归纳了常用的超细晶金属制备方法,综述了超细晶金属材料塑性降低的研究进展,总结了超细晶金属增塑的研究结果,分析了目前研究中存在的不足,探讨了超细晶金属增强增塑的发展趋势,以期为超细晶金属塑性降低理论及增强增塑研究提供参考。  相似文献   

2.
镁及其合金具有低密度、高比强度、高导热性、高阻尼性以及良好的电磁屏蔽性能等优点,成为最具应用前景的结构材料之一。随着环保问题的日益突出,轻量化和节能减排变得日趋重要,对具有低密度、高性能和可回收再生产等特性的结构材料提出了大量且迫切的需求,这对镁合金的发展和应用提供了广阔的前景,但目前镁合金特别是变形镁合金还没能大规模工业化应用,还有问题需要解决。绝对强度较低、塑性较差等是影响变形镁合金应用的主要瓶颈。在材料传统的四种强化理论中,析出强化、加工硬化等可以显著提高变形镁合金的绝对强度,但同时会损害其塑性;固溶强化一般只能提高强度,降低塑性,在镁合金中虽存在一些能够同时提升强度和塑性的固溶元素,但该类元素较少,且对强度和塑性的提升效果也十分有限,还有待进一步研究发展;而晶粒细化是目前最有效的能同时提高材料强度和塑性的方法,当晶粒细化至数个微米量级时(超细晶),材料的强度和塑性会得到极大提升。在钢铁材料中的超细晶钢,就是利用超细晶组织(一般认为超细晶组织的目标是将晶粒尺寸从传统的几十微米细化至1~2μm)使钢铁材料的综合力学性能翻一番。同时,晶粒超细化也是高性能镁合金的研究重点之一。近期相关研究表明,超细晶镁合金拥有良好的强度和塑性,甚至还具有室温超塑性。目前常用于制备超细晶镁合金的方法主要有两种:剧烈变形法和中低温变形法。其中剧烈变形法主要采用等通道挤压、高压扭转、累积叠轧、多向锻造、粉末冶金等工艺方法来实现晶粒超细晶化,已有一定的发展历史,具有较深的研究基础;而中低温变形法是近年来新兴的一种制备超细晶镁合金的方法,同样能够成功制备出平均晶粒尺寸约为1μm的超细晶镁合金材料,该方法具备工业化应用的潜力。此外,通过剧烈变形法和中低温变形法制备的不同合金成分的超细晶镁合金材料性能差异较大,因此合金的成分设计在两种制备超细晶镁合金的方法中也具有至关重要的作用。总地来说,通过设计不同的合金成分,改进制备工艺,准确调控变形过程中的再结晶行为,制备出组织良好、性能优异的镁合金材料已成为发展超细晶镁合金的重要方向。因此,本文综述了目前超细晶镁合金的研究现状及主流的制备方法的优缺点,并分析了超细晶镁合金的制备方法和合金设计对组织和性能的影响,最后对超细晶镁合金的发展方向进行展望。  相似文献   

3.
强度和塑韧性是金属结构材料主要的性能指标,然而通常会出现强度与塑韧性倒置的现象,即传统的固溶强化、纳米晶强化、弥散强化和加工硬化在追求强度的同时会不可避免地牺牲金属材料的塑韧性.根据多级多尺度仿生结构可协同提高强度和韧性的思路,系统介绍了两级Ti-TiBw/Ti复合材料、不锈钢复合板、多层复合钢、层/网耦合结构钢和超细纤维晶钢的构型设计,并揭示其强韧化机理和断裂机制,通过改变裂纹的扩展方式与裂纹的竞争机制,以及残余内应力的释放等途径,有效实现材料的强韧化,可为金属材料强韧化提供新的设计思路和技术支撑.  相似文献   

4.
钛基金属玻璃不仅密度小,而且具有优良的耐腐蚀性能,因此成为质轻、高强、生物相容结构材料的重要候选材料.钛基大块金属玻璃中弥散分布的纳米晶能够引发塑性变形,因此可以通过优化纳米晶的组织结构和在金属玻璃中的分布来提高塑性应变.  相似文献   

5.
块体金属玻璃(BMG)具有高强度、高硬度和大的弹性应变极限等独特的力学性能。然而由于缺乏位错、孪生等晶态缺陷,金属玻璃通过高度局域化的剪切带发生塑性变形,因此其通常不显示加工硬化行为,而发生应变软化和/或热软化。这导致了BMG早期灾难性失效,极大地限制了其广泛的工程应用。然而近年来,人们在一些单相BMG材料中观察到了明显的加工硬化行为。这引起了工程界学者的极大兴趣,也引发了关于金属玻璃加工硬化起源机制的讨论。目前人们对于金属玻璃的结构如何影响其性能和形变行为的理解还非常有限,BMG的加工硬化起源仍是当前颇具争议的研究热点。但总的说来,BMG的加工硬化行为与外加应力(能量)引起的内部结构改变,包括多重剪切带的形成、自由体积的演化和纳米晶化行为等密切相关,并最终涉及其变形过程中的剪切带行为。Cu47.5Zr47.5Al5是被最早报道的可加工硬化的塑性BMG。相关研究认为,合金中存在的不同尺度的化学和/或结构非均匀性促进了材料变形过程中多重剪切带的形成和增殖;而大量剪切带在三维方向上的交互作用导致了材料流变应力的增加,从而引起加工硬化。这就是BMG的加工硬化机理,该理论最早由Das等提出,后来被更多研究所证实。之后,研究者们在某些BMG加载-卸载循环纳米压痕试验中观察到了应变硬化-软化现象,并提出了BMG加工硬化的"自由体积模型"。他们认为,外加剪应力的改变导致了非晶结构内部净自由体积的变化,进而通过其对塑性变形微区剪切带行为的影响引起材料硬度的变化。Chen等在对均质结构的Cu50Zr50非晶条带进行弯曲变形后,检测到剪切带内原位纳米晶化,并基于对剪切带-纳米晶相互作用的实验观察,发展了形变诱导纳米晶化导致的应变硬化机制。这些工作丰富和发展了BMG加工硬化的基本原理及其研究方法。本文简要介绍了通常用来评估金属材料加工硬化能力的方法 /参数,并概述了金属玻璃中的剪切带行为;在此基础上,通过对几种典型的BMG加工硬化行为的分析,归纳性地讨论了BMG加工硬化起源可能的机制,以期为研究BMG的力学行为、开发性能优异的塑性BMG结构材料提供参考。  相似文献   

6.
金属Cu中孪晶的作用已受到广泛关注.介绍了孪晶的分类及晶体学结构,综述了孪晶对Cu强度、塑性、加工硬化、应变速率敏感性、变形机制和电阻率(或电导率)等方面的影响规律及内在机理,讨论了孪晶Cu研究的不足之处及需要加强的方面,并指出通过适当的工艺技术,在晶粒中引入高密度的孪晶同时获得高强度、高塑性和良好电导性能,将是未来发...  相似文献   

7.
以纯铝、铜粉末为起始原料,采用叠片粉末冶金技术路线,通过球磨片化、复合造粒与扩散合金化,制备出了高强塑性匹配的超细晶Al-4%Cu合金。利用XRD、SEM及TEM,表征了合金相形成、演变及微观组织,并与采用球形铝粉的传统粉末冶金技术制备的Al-4%Cu合金进行了性能对比。结果表明,叠片粉末冶金能够获得拉长超细晶组织,引入的Al_2O_3纳米相使拉长晶在热变形加工过程得以保留;叠片粉末冶金所制备的Al-4%Cu合金屈服强度为378 MPa、抗拉强度达到527 MPa,分别比传统粉末冶金提高26.4%和19.2%,同时保持14.2%的延伸率,实现了强度和塑性的均衡匹配,为高强韧大块铝合金材料制备提供了新思路。  相似文献   

8.
王军丽  史庆南 《材料导报》2005,19(Z1):15-19
主要介绍了纳米超细晶材料的制备方法、应用状况以及研究发展趋势.认为除深度塑性加工方法外,传统的各种制备方法存在着不能获得大尺寸块体,材料内部有微孔隙存在,工艺过程复杂等不足.深度塑性变形解决了传统纳米超细晶材料制备方法存在的问题.纳米超细晶材料的应用并不是很广泛,因此在以后的研究中从研究到应用还需做大量工作.  相似文献   

9.
以醋酸锌、氯化镉、醋酸锰和硫化钠为原料,采用末端带双键的聚甲基丙烯酸(PMAA)大分子单体为配体,在水溶液中成功制备出分散均匀并具有良好荧光性的Cd2+和Mn2+掺杂复合的ZnS纳米晶.利用电导率分析、TGA、Uv-vis、荧光光谱(PL)等表征手段考察了复合纳米晶结构和光学性能的关系.结果表明,PMAA中的大量羧基是以配位键的形式和纳米晶表面金属原子相结合.通过改变掺入的Cd2+的含量,能够获得从紫外光到可见光范围的ZnS:Cd2+复合纳米晶材料.  相似文献   

10.
付磊  林莉  罗云蓉  谢文玲  王清远  李辉 《材料导报》2021,35(3):3114-3121
利用严重塑性变形以及电沉积等方法制备的块体纳米晶、超细晶材料具有优越的力学性能以及独特的物理化学性能,但其韧性和抗应变局域化能力显著降低,加工硬化能力消失.块体纳米晶、超细晶材料由于具有较高的强度,能有效抑制疲劳裂纹萌生,从而有效提高应力控制循环载荷作用下的高周疲劳性能,但其塑性差,缩短了应变控制作用下的低周疲劳寿命.事实上,工程结构疲劳失效往往起源于材料表面,在循环载荷作用下,疲劳裂纹通常从材料表面萌生并向内部扩展.因此,优化材料表面微观组织结构和性能有利于提高其服役寿命.为此,近年来,人们通过开发一些新颖的表面改性方法来制备梯度纳米结构材料,这些方法也被称为表面自纳米化.与其他传统的表面改性技术相比,利用表面纳米化技术在金属材料表面制备梯度纳米结构表层,所得纳米结构表层具有硬度高、表面粗糙度小以及梯度层厚等特点.梯度纳米结构材料表层由纳米晶构成,而芯部仍然保持未变形粗晶基体结构,晶粒尺寸由表及里逐渐从纳米尺度变化到微米尺度,这一特殊的材料构筑形式使其具有优越的抗高、低周疲劳性能.目前,关于梯度纳米结构材料的力学性能,尤其是疲劳性能的研究已经成为该领域的一大研究热点,许多工程实际应用都得益于这一领域的研究成果,然而,目前尚缺乏文献系统总结这一研究成果.为此,本文系统总结了近年来关于梯度纳米结构材料疲劳性能研究的最新进展,对影响其疲劳性能的因素进行了深入分析,对梯度纳米结构材料疲劳性能研究所面临的许多亟待解决的基础科学问题进行了讨论和展望,为梯度纳米结构材料在这一工程领域的应用提供借鉴.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号