首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Accurate prediction of fatigue crack growth on railway wheels and the influence of residual stresses by finite element method (FEM) modeling can affect the maintenance planning. Therefore, investigation of rolling contact fatigue and its effect on rolling members life seem necessary. The objective of this paper is to provide a prediction of rolling contact fatigue crack growth in the rail wheel under the influence of stress field from mechanical loads and heat treatment process of a railway wheel. A 3D nonlinear stress analysis model has been applied to estimate stress fields of the railway mono-block wheel in heat treatment process. Finite element analysis model is presented applying the elastic–plastic finite element analysis for the rail wheel under variable thermal loads. The stress history is then used to calculate stress intensity factors (SIFs) and fatigue life of railway wheel. The effect of several parameters, vertical loads, initial crack length and friction coefficient between the wheel and rail, on the fatigue life in railway wheels is investigated using the suggested 3-D finite element model. Three-dimensional finite element analysis results obtained show good agreement with those achieved in field measurements.  相似文献   

2.
Railway wheels have been one of the most critical components in a railway vehicle. Fatigue design of railway wheel is one of the most important factors. Damages on the wheel can be divided into three types, such as the contact fatigue of the tread, the thermal fatigue of the rim due to braking and the mechanical fatigue of the web plate. The railway wheel has the initial residual stress formed during the manufacturing process, and this residual stress changes due to the thermal stress induced by braking. In this study, we evaluated residual stress of web plate by heat treatment due to the manufacturing process and changes of residual stress by braking using finite element analysis. The cyclic stress history for fatigue analysis is determined by applying finite element method. The fatigue strength evaluations of the web plate are performed to investigate the effect of the residual stress.  相似文献   

3.
A fatigue damage model to assess the development of subsurface fatigue cracks in railway wheels is presented in this paper. A 3‐dimensional finite element model (FEM) is constructed to simulate repeated cycles of contact loading between a railway wheel and a rail. The computational approach includes a hard‐contact over‐closure relationship and an elastoplastic material model with isotropic and kinematic hardening. Results from the simulation are used in a multiaxial critical‐plane fatigue damage analysis. The employed strain‐based critical‐plane fatigue damage approach is based on Fatemi‐Socie fatigue index that takes into account the non‐proportional and out‐of‐phase nature of the multiaxial state of stress occurs when a railway wheel rolls on a rail. It predicts fatigue‐induced micro‐crack nucleation at a depth of about 3.7 mm beneath the wheel tread, as well as the crack plane growth orientation which indicates the possible failure pattern. Additionally, the influence of various factors such as contribution of normal stresses, higher wheel load, and material model have been investigated.  相似文献   

4.
Repetitive high frictional forces, induced from braking, and running of a train during railway service, generate high frictional temperature increment at the contact surface, as a result, thermal fatigue damage occurs at the surface of the wheel. Microscopic deformation in the wheel surface due to repetitive fatigue damage causes an initiation and propagation of thermal crack. That is, if the microscopic deformation is accumulated beyond the tolerance of the material resistances including the hardening of material and residual stress, then the surface will be damaged and fractured. As a result, the derailment of railway vehicle may possibly happen.In the present paper, we study on the failure analyses at the tread of the thermally damaged wheel by doing the metallurgical transformation analysis, hardness analysis, and the residual stress analysis to understand the failure mechanism of thermal fatigue damaged wheel. For this purpose, the microstructure of tread surface was examined by applying non-destructive replication method, and the hardness along the tread surface was measured. Also, the change in residual stress in the tread surface of new and thermal-damaged wheels was investigated. Meanwhile, FE analyses were performed considering the heat treatment process of wheel manufacturing, and the braking process during railway service. From the analysis results, we understand that the degree of metallurgical transformation is not the same even in the same tread surface, and residual stress measured turns into tensile stress from the compressive stress in manufacturing in the magnitude of approximately 118 MPa in the thermal damaged surface wheel. The finite element analysis (FEA) data of residual stress considering heat treatment process of wheel is in good agreement with the experimental results measured in the wheel tread.  相似文献   

5.
Gauge change in straight plate, locomotive, railway wheels is studied using finite element analysis. The study accounts for residual stresses generated during wheel manufacturing and fitment of the wheel on locomotive axle. A validated thermal model accounting for heat loss to rail, brake blocks and ambient air is considered for accurate prediction of wheel temperatures for a given train running and braking history. Results are obtained for low- and high-friction, composite brake blocks used by Indian Railways for two limiting braking scenarios: (i) synchronized braking where braking effort is uniformly distributed on all brake blocks and (ii) independent braking where braking effort to decelerate a train is provided solely by locomotive brake blocks. Results show that bending at hub–disc interface predominantly governs the gauge change. While compressive hoop stresses in the tread region, occurring from rim heating during braking, cause gauge reduction, tensile hoop stresses in the tread region, occurring during wheel cool down cause an increase in wheel gauge. Importantly, while gauge condemning is a transient phenomenon occurring only during braking, gauge widening is “permanent” as it exists even after the wheels cool to room temperature. Allowable reduction of wheel gauge of 0.5 mm, currently used by Indian Railways, is found to be highly restrictive. In fact, in service wheel failure based on this criterion is observed in all braking scenarios considered.  相似文献   

6.
温泽峰  金学松  肖新标 《工程力学》2007,24(12):158-163,168
采用弹塑性有限元法,分析了多步非稳态载荷下钢轨滚动接触应力和变形。多步载荷指的是钢轨同时受到机车和车辆车轮的反复作用或多趟列车通过钢轨。通过在钢轨表面重复移动Hertz法向压力分布和切向力分布来模拟车轮的反复滚动作用。材料循环塑性本构模型采用考虑材料棘轮效应的Jiang-Sehitoglu模型。分析结果表明:在非稳态载荷作用下,钢轨接触表面产生不均匀塑性变形而形成波状表面;多步载荷对钢轨残余应力影响不大;随着机车车轮通过次数的增加,钢轨残余剪应变、表面材料位移、波深和残余累积等效塑性应变将增大,在机车车轮通过之后,随着车辆车轮通过次数的增加,前三个量将减小,而残余累积等效塑性应变继续增大,但其增大的速率变小。随着机车和车辆车轮反复滚过钢轨,钢轨残余剪应变、表面材料位移和波深变化速率即棘轮率呈衰减性。  相似文献   

7.
Sliding friction between railway wheels and rails results in elevated contact temperatures and gives rise to severe thermal stresses at the wheel and rail surfaces. The thermal stresses have to be superimposed on the mechanical contact stresses. Due to the distribution of stresses, the rail surface is generally subjected to higher stresses than the wheel surface. The elastic limit is reduced and yield begins at lower mechanical loads. During the first cycles of plastic deformation, the material hardens and residual stresses build up. The residual stresses provide the structure to shake down to pure elastic behaviour in subsequent load cycles up to a shakedown limit. The kind of hardening observed for rail steel has a considerable influence on the shakedown limit. The shakedown limit is dropped to lower mechanical loads due to the thermal stresses in the rail surface as well. This might cause structural changes in the rail material and rail damage.  相似文献   

8.
Repair welding for recovery from local damage of a rail head surface is known to cause high residual stress and can accelerate fatigue in the rail. This study examines repair‐welded rails by applying experimental and numerical approaches. In the former approach, two newly manufactured rail specimens and four repair‐welded rail specimens with two different weld depths were prepared, and their residual stresses were measured with a sectioning method. In the latter approach, a finite element repair welding simulation model was developed that adopted a prescribed temperature method with a moving block as an input heat source, and the thermal strain caused by the volume change due to solid‐state phase transformation was considered. Overall, the residual stresses correlated well between the experimental and numerical approaches. The measured high compressive residual stress of ?290 MPa seems to be beneficial to prevent a crack initiation in the rail surface.  相似文献   

9.
Shelling is the term used to describe the loss of part of the tread of a railway wheel as the result of the initiation and growth of a fatigue crack from an internal defect in the rim. Shelling makes the wheel unserviceable and to prevent it, railway wheels are periodically subjected to non-destructive testing. However in order to assess the criticality of any cracks found, it is necessary to know the modes I, II and III stress intensity factors of the crack.In this paper a versatile approach for the analysis of internal cracks in wheels under Hertzian loads is described. It is based on the analytical calculation of the displacement field in the wheel and on imposing it as boundary condition in a finite element analysis of the wheel zone close to the crack.Experimental tests were executed on photoelastic models to validate the results. A new technique was developed to naturally obtain an internal crack in the epoxy resin model. The stress-freezing technique was employed to elaborate the photoelastic fringes and to obtain the stress intensity factors. The numerical and the experimental results are critically discussed and their comparison shows an interesting and encouraging agreement.  相似文献   

10.
Fatigue failure of a high manganese steel crossing is related to its internal crack initiation and growth, which is affected significantly by the magnitude and distribution pattern of contact stress and residual stress in the crossing. Considering the actual service conditions of a crossing and the accuracy requirement for numerical calculation, a whole model of wheel/crossing/ties and a partial model of wheel/crossing are established using elastic‐plastic finite element method. The distributions of contact stress fields and residual stress fields due to wheel contact loading are studied. The effect of train speed on the residual stress in the nose rail is discussed. The contact stress field shows regular contours in the cross‐section of nose rail and decreases remarkably with increasing distance of the wheel‐crossing contact position. The maximum contact stress is located at the contact surface between wheel and crossing. The maximum residual stress is located at a position of 1.5‐2.0 mm below the surface of the nose rail, rather than at the contact surface of wheel and crossing. In a failed high manganese steel crossing, the dense cracks mainly were observed neither at the position of maximum contact stress (the contact surface between the wheel and the crossing), nor at the position of maximum residual stress (1.5‐2.0 mm below the surface of the nose rail), but around the depth of 0.8‐1.0 mm from the worn surface, which is between the position of maximum contact stress and the position of maximum residual stress. It indicates that the combined effects of the maximum contact stress and the maximum residual stress play important roles in fatigue crack initiation in the nose rail. The size of high residual stress region increases with the increase of the train speed. The maximum residual stress in the nose rail increases remarkably with the increase of the train speed.  相似文献   

11.
根据面齿轮磨削残余应力的产生机理和Prandtl-Reuss方法,建立磨削表层热弹塑性力学本构关系;基于面齿轮磨削方法和Gleason接触原理,得出碟形砂轮磨削点接触椭圆方程参数、磨削力和磨削热流量的数学模型。构建面齿轮磨削单齿3D有限元模型,采用小步距移动法模拟磨削载荷的移动,仿真磨削温度场,得到磨削瞬态最高温度位于磨削接触弧中心区域。采用力热耦合间接法仿真分析了磨削表层残余应力,得出磨削齿面上为残余压应力,齿面里层为残余拉应力;随磨削深度和砂轮速度增大,齿面残余应力增加显著;但随展成速度增大,齿面残余应力增幅减小。采用X射线衍射法实验,对比分析了面齿轮磨削表层残余应力的实测值与仿真值,其相对误差最大值17.8%在精度控制范围内,说明力热耦合有限元分析残余应力有效,为改善面齿轮磨削质量提供了依据。  相似文献   

12.
赵腾  张军  孙传喜 《工程力学》2012,29(10):308-312
针对机车运行中出现轮缘磨耗严重这一问题, 统计苏家屯机务段电力机车轮对检修记录, 将轮缘磨耗过程可以分为3 个阶段:初期磨耗阶段、磨耗稳定阶段和后期磨耗阶段。建立不同磨耗时期的轮轨弹塑性接触模型, 运用有限元方法进行计算分析。计算结果表明:车轮轮缘厚度从32mm磨耗到27mm这个过程, 轮缘上的接触等效应力相对较小, 轮缘磨耗速度在整个磨耗过程中最低;机车车轮镟修或换轮后在磨耗后线路上运行, 标准车轮与磨耗钢轨的型面匹配状况不佳, 接触等效应力集中在车轮轮缘上, 运行初期轮缘磨耗较快。得出的结论有助于设计出更好的轮轨型面来降低轮缘磨耗。  相似文献   

13.
A finite element model accounting for heat partitioning at brake block–wheel and rail–wheel interfaces is used to investigate the effect of locomotive wheel profile, wheel diameter, brake block type, nature of braking (independent, synchronized, and drag), braking frequency and braking cycles on wheel gauge for tread braked, locomotive wheel sets. A train running model estimates heat generation rates during braking for assumed operating and braking conditions. Wheel profiles and brake block types used in the work, match with that used by Indian Railways. Bending at hub–disc and disc–rim interfaces is seen to primarily control axial deflection of wheels. While gauge reduction is observed during braking, gauge increase is seen during subsequent cooling. Maximum gauge increase occurs as the wheels finally cool down to room temperature. S-shaped wheels are seen to be better suited than straight plate and parabolic profile wheels for avoiding excessive gauge change. Locomotive wheel failure from gauge widening and condemning, albeit at different times, is seen to occur with independent braking for locomotives fitted with straight plate, S-shaped as well as parabolic profile wheels.  相似文献   

14.
A general subsurface crack propagation analysis methodology for the wheel/rail rolling contact fatigue problem is developed in this paper. A three-dimensional elasto-plastic finite element model is used to calculate stress intensity factors in wheels, in which a sub-modeling technique is used to achieve both computational efficiency and accuracy. Then the fatigue damage in the wheel is calculated using a previously developed mixed-mode fatigue crack propagation model. The advantages of the proposed methodology are that it can accurately represent the contact stress of complex mechanical components and can consider the effect of loading non-proportionality. The effects of wheel diameter, vertical loading amplitude, initial crack size, location and orientation on stress intensity factor range are investigated using the proposed model. The prediction results of the proposed methodology are compared with in-field observations.  相似文献   

15.
A finite element analysis is conducted to study dynamic elastic–plastic stress when a wheel passes a rail joint with height difference between the two sides of a gap. The ANSYS implicit code and LS-DYNA explicit code are coupled to simulate the process of the wheel contacting or impacting the rail joint. Contact elements are used to simulate the interactions between wheel and rails, between rails and joint bars, between joint bars and bolts and between bolts and rails. The effects of train speed, axle load and height difference on the contact forces, stresses and strains at railhead are investigated. Numerical results show that the presence of rail joint with height difference significantly affect the contact force, stress and strains. The results also indicate that the train speed has a larger effect on the contact force, stress and strains than the axle load.  相似文献   

16.
The results of an experimental investigation of the multiaxial fatigue behaviour of the R7T steel are presented. The R7T steel is currently employed in the production of solid high-speed railway wheels. Wheel failures due to rolling contact fatigue may occur and, on some occasions, fatigue cracks nucleate in the sub-surface region under the contact area between wheel and rail. Here, the stress field is multiaxial and the loading path is non-proportional. Specimens extracted from the rim of railway wheels were subjected to combined out-of-phase alternating torsion and pulsating compressive axial loads, a non-proportional stress state which is similar to that observed under the contact area in the wheel rim. The tests results are discussed in the light of some multiaxial fatigue theories, chosen among those based on the critical plane concept and those implementing an integral approach, with the aim of selecting a fatigue criterion suitable for the sub-surface fatigue assessment of railway wheels.  相似文献   

17.
The effects of traditional corundum and boron-nitride (CBN) wheels on the surface integrity of internally and externally ground steel parts has been investigated in respect to microhardness, residual stresses, and change of texture. The microhardness and residual stress components of the surface layer of HSS tools ground with CBN wheels have been measured and texture has been also investigated. Case-hardened steels have been ground with mainly traditional wheels. The change of microhardness, residual stresses, and texture depends to a large extend not only on grinding parameters but also on the grade of sharpness of the wheel. The difference between grinding with sharp and worn wheels is significant. These facts prove the importance of different continuous wheel dressing processes. The effect of the coolant on the surface quality has also been examined.  相似文献   

18.
Prediction of welding buckling distortion in a thin wall aluminum T joint   总被引:1,自引:0,他引:1  
In this paper, local and global welding buckling distortion of a thin wall aluminum T joint is investigated. A thermo-elastic–viscoplastic model is employed to determine longitudinal residual stresses; analysis of thermal model and elastic–viscoplastic (Anand) model are uncoupled. Molten puddle motion (speed of welding) is modeled by using time dependent birth and death element method. Three dimensional nonlinear-transient heat flow analysis has been used to obtain the temperature distribution, and then by applying thermal results and using three dimensional Anand elastic–viscoplastic model, stress and deformation distributions are obtained during welding and after cooling. Local buckling is investigated by analyzing the history of stress and strain relations. Local buckling is assumed to occur at a point if a small change in the magnitude of stress causes large deformation during of the welding process. By applying residual stresses on a structural model and using eigenvalue methods, global buckling instability of the welded structure is determined.  相似文献   

19.
车轮原地打滑时轮轨接触界面摩擦温升分析   总被引:1,自引:0,他引:1  
吴磊  温泽峰  金学松 《工程力学》2007,24(10):150-155
简要介绍了轮轨滚滑接触摩擦温升的研究历史和现状。基于有限元法和非稳态传热方程,建立了车轮在钢轨上原地打滑时轮轨摩擦热分析模型,分析车轮打滑速度对钢轨接触斑附近温度场的影响。模型考虑了轮轨与环境间的热辐射和热对流边界条件、轮轨接触区的相互换热以及轮轨材料热物性参数随温度的变化。分析结果显示:车轮原地打滑时,钢轨表面温升率在打滑初期非常高,随后温升率逐渐趋于零;表面温升达到稳定状态后,钢轨表面温升与轮轨接触区相对滑动速度呈线性关系;当车轮打滑转动的角位移相同而其他条件不变时,钢轨表面热影响层厚度基本不随相对滑动速度的大小而变化。  相似文献   

20.
Railhead is perhaps the highest stressed civil infrastructure due to the passage of heavily loaded wheels through a very small contact patch. The stresses at the contact patch cause yielding of the railhead material and wear. Many theories exist for the prediction of these mechanisms of continuous rails; this process in the discontinuous rails is relatively sparingly researched. Discontinuous railhead edges fail due to accumulating excessive plastic strains. Significant safety concern is widely reported as these edges form part of Insulated Rail Joints (IRJs) in the signalling track circuitry. Since Hertzian contact is not valid at a discontinuous edge, 3D finite element (3DFE) models of wheel contact at a railhead edge have been used in this research. Elastic–plastic material properties of the head hardened rail steel have been experimentally determined through uniaxial monotonic tension tests and incorporated into a FE model of a cylindrical specimen subject to cyclic tension loading. The parameters required for the Chaboche kinematic hardening model have been determined from the stabilised hysteresis loops of the cyclic load simulation and implemented into the 3DFE model. The 3DFE predictions of the plastic strain accumulation in the vicinity of the wheel contact at discontinuous railhead edges are shown to be affected by the contact due to passage of wheels rather than the magnitude of the loads the wheels carry. Therefore to eliminate this failure mechanism, modification to the contact patch is essential; reduction in wheel load cannot solve this problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号