首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 328 毫秒
1.
根据SNS型双路约瑟夫森结阵的驱动原理以及结阵分段特点,提出了平衡三进制驱动算法,实现了双路约瑟夫森结阵偏置状态的快速计算。根据约瑟夫森结阵的偏置状态以及组合方式,采用节点电压法,准确合成了双路阶梯波交流量子电压的台阶电压值,最终实现了最小分辨率为2个结,有效位为15位的交流量子电压输出。双路交流量子电压互测实验结果表明,合成交流量子电压的最大误差为0.06 μV,双路信号同步性测试实验中,两个通道的相位差为-0.01 μrad,证明了合成双路交流量子电压具有较高的幅值准确度和相位同步性。  相似文献   

2.
约瑟夫森量子电压目前大多应用于正弦信号的测量,极少有针对谐波信号的研究。对可编程约瑟夫森电压基准应用于谐波检测的可行性进行了研究,实现谐波电压向量子电压过渡。在使用阶梯波交流量子电压进行谐波电压测量时,由于过渡过程和吉布斯现象的存在,部分数据出现较大波动;若将该部分处于过渡过程的数据纳入傅里叶变换,会导致恢复得到的信号幅值和相位失真。针对这一问题,提出了一种新的谐波电压计算方法:加权傅里叶变换。该方法通过将处于过渡过程的数据权重置零的方式,实现了谐波电压的准确测量。实验结果表明,谐波电压幅值和相位测量结果较理想,幅值测量标准差均小于1 μV,相位测量标准差均小于15 μrad。  相似文献   

3.
相比于传统的实物电压标准,基于约瑟夫森效应建立的交流量子电压标准,具有复现性好、稳定性高和不确定度低等优点。从物理原理、存在问题以及应用价值等角度出发,梳理、归纳先后发展起来的可编程约瑟夫森电压标准和脉冲驱动的交流约瑟夫森电压标准,并比较这两种量子电压标准的计量性能,介绍我国构建交流量子电压标准的现状及进展。  相似文献   

4.
本文介绍了交流约瑟夫森电压标准系统的性能。该系统是一种新型的交流量子电压计量装置,用于校准常用的直流和交流电压标准。通过测试几个福禄克5700A系列校准器,其电压为10V,频率是1k Hz了解到该系统在工业环境中的性能和操作方法。交流电压标准的测量不确定度小于1×10-6  相似文献   

5.
脉冲驱动型交流量子电压标准ACJVS通过高速脉冲序列驱动约瑟夫森结阵芯片的方式实现宽频带交流量子电压的合成,相比于可编程型交流量子电压标准PJVS,具有免台阶切换、频谱纯净、频带宽等优点。搭建的系统主要包括8位高速脉冲码型发生器、微波放大器、直流阻断、约瑟夫森结阵芯片等。通过驱动包含4个子阵列,每个子阵列含12810个约瑟夫森结的结阵芯片,并结合4通道联合低频补偿的方式,成功产生了1V有效值的脉冲驱动型交流量子电压,为进一步建立交流量子电压基准打下了坚实的基础。最后,展望了脉冲驱动型交流量子电压在量子阻抗桥、交流量子功率源、交流量子功率表方面的应用价值。  相似文献   

6.
王曾敏  高原  李红晖 《计量学报》2012,33(2):154-157
设计制作了一套交流约瑟夫森电压合成装置(JAWS),能够驱动1 V SINIS型可编程约瑟夫森结阵合成峰值1.2 V、 200 Hz以下频率的交流量子电压。实验结果表明,该装置能够合成200 Hz以下频率的交流量子电压,且合成60 Hz交流电压的不确定度优于5×10-6,为进一步开展我国首个交流量子电压基准的研究工作奠定了基础。  相似文献   

7.
本文采用标准表法对数字式交流电参数仪表交流电压、电流、功率示值误差进行校准。并对交流电压、电流、功率示值误差的测量值的不确定度进行评定。  相似文献   

8.
10V约瑟夫森结阵电压基准   总被引:1,自引:0,他引:1  
在 1V约瑟夫森结阵电压基准的基础上 ,10 V约瑟夫森结阵电压基准于 1999年底在中国计量科学研究院量子部电压实验室建立。其校准电压在 0 .1V~ 10 V范围内连续可调。校准固态电压标准 10 V输出值的合成不确定度为 5.4× 10 -9(1σ)  相似文献   

9.
我院研制的“10伏约瑟夫森结阵电压基准”装置,荣获2 0 0 3年度国家科技进步奖二等奖。10伏约瑟夫森结阵电压基准是量子基准。1990年1月1日,国际计量委员会推荐用约瑟夫森效应复现电压单位量值,以保证国际范围内溯源的一致性。美、德、法、日等发达国家相继建立了1伏及10伏的约瑟夫森电压基准。我院1994年研制出1伏约瑟夫森结阵电压基准,1996年由世行贷款立项,建立10伏约瑟夫森结阵电压基准课题,于1999年研制成功,该装置系统的测量不确定度为5 4×10 - 9,达到了国际先进水平。10伏约瑟夫森结阵电压基准利用低温超导结电子跃迁效应复现电压…  相似文献   

10.
依据ISO 16063-41《激光测振仪的校准》FDIS稿[1],介绍了激光测振仪的校准方法,并对此方法中影响振动幅值测量的多个误差来源进行分析和评定,给出了激光测振仪在160Hz频率下振动幅值测量结果的扩展不确定度,为进一步完善振动量值的不确定度评估以及振动计量器具检定系统提供技术支持.  相似文献   

11.
We have developed a precision technique to measure sine-wave sources with the use of a quantum-accurate ac programmable Josephson voltage standard. This paper describes a differential method that uses an integrating sampling voltmeter to precisely determine the amplitude and phase of high-purity and low-frequency (a few hundred hertz or less) sine-wave voltages. We have performed a variety of measurements to evaluate this differential technique. After averaging, the uncertainty obtained in the determination of the amplitude of a 1.2 V sine wave at 50 Hz is 0.3 $muhbox{V/V}$ (type A). Finally, we propose a dual-waveform approach for measuring two precision sine waves with the use of a single Josephson system. Currently, the National Institute of Standards and Technology (NIST) is developing a new calibration system for electrical power measurements based on this technique.   相似文献   

12.
计算电容是电学阻抗单位复现的基准装置,是电容、电感和交流电阻的溯源依据.它是电磁计量领域内除量子电压、量子电阻基准之外准确度最高的装置.计算电容装置实现微小电容值(0.2至0.6 pF)精确测量的关键在于对其屏蔽电极位移的高准确度测量.从计算电容屏蔽电极位移测量的基本原理出发,系统分析了屏蔽电极位移测量结果的影响因素,...  相似文献   

13.
陆祖良  杨雁  黄璐  王磊 《计量学报》2019,40(2):319-328
将片段采样概念应用于正弦波电压的差分测量,把多周期策略施加于被测正弦波的频率扩展,通过实验演示上述测量的具体过程,验证方法的可行性。分析了阶梯波差分测量的特点。为适应这个特点,提出了限幅片段采样的概念及相应的方法。由此提出将交流量子电压基准的准确度提高一个数量级至10-8水平的建议,叙述了它的原理及具体的方法,指出了所需要的条件。  相似文献   

14.
We are implementing a new standard for 60 Hz power measurements based on precision sinusoidal reference voltages from two independent programmable Josephson voltage standards (PJVS): one for voltage and one for current. The National Institute of Standards and Technology PJVS systems use series arrays of Josephson junctions to produce accurate quantum-based DC voltages. Using stepwise-approximation synthesis, the PJVS systems produce sinewaves with precisely calculable RMS voltage and spectral content. We present measurements and calculations that elucidate the sources of error in the RMS voltage that are intrinsic to the digital-synthesis technique and that are due to the finite rise times and transients that occur when switching between the discrete voltages. Our goal is to reduce all error sources and uncertainty contributions from the PJVS synthesized waveforms to a few parts in 10 7 so that the overall uncertainty in the AC-power standard is a few parts in 106  相似文献   

15.
We are developing a quantum-based 60 Hz power standard that exploits the precision sinusoidal reference voltages synthesized by a programmable Josephson voltage standard (PJVS). PJVS systems use series arrays of Josephson junctions as a multibit digital-to-analog converter to produce accurate quantum-based dc voltages. Using stepwise-approximation synthesis, the system can also generate arbitrary ac waveforms [i.e., an ac programmable Josephson voltage standard (ACPJVS)] and, in this application, produces sine waves with calculable root mean square (rms) voltage and spectral content. The primary drawback to this ACPJVS synthesis technique is the uncertainty that results from switching between the discrete voltages due to finite rise times and transient signals. In this paper, we present measurements and simulations that elucidate some of the error sources that are intrinsic to the ACPJVS when used for rms measurements. In particular, we consider sine waves synthesized at frequencies up to the audio range, where the effect of these errors is more easily measured because the fixed transition time becomes a greater fraction of the time in each quantized voltage state. Our goal for the power standard is to reduce all error sources and uncertainty contributions from the PJVS-synthesized waveforms at 60 Hz to a few parts in 107 so that the overall uncertainty in an ac power standard will be a few parts in 106.  相似文献   

16.
王学伟  王向红 《计量学报》1999,20(3):219-226
本文提出了具有量化误差、非线性误差和微分非线性误差的A/D转换器的数据学模型,在该数学模型的基础上,仿真分析了非同步采样法、准同步采样递推算法各种情况下的误差,包括功率测量中电压线性、电流线性、相位变化误差及电压测量的误差。由于分析中的条件更近接应用中的实际情况,因此,仿真分析的结论为测量仪器设计中的误差估计提供了重要依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号