首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tan Y  Jiang H 《Applied optics》2008,47(12):2011-2016
We describe a method that combines fluorescence molecular tomography (FMT) with diffuse optical tomography (DOT), which allows us to study the impact of heterogeneous optical property distribution on FMT, an issue that has not been systemically studied. Both numerical simulations and phantom experiments were performed based on our finite-element reconstruction algorithms. The experiments were conducted using a noncontact optical fiber free, multiangle transmission system. In both the simulations and experiments, a fluorescent target was embedded in an optically heterogeneous background medium. The simulation results clearly suggest the necessity of considering the absorption coefficient (mu(a)) and reduced scattering coefficient (mu'(s)) distributions for quantitatively accurate FMT, especially in terms of the accuracy of reconstructed fluorophore absorption coefficient (mu(a(x-->m))). Subsequent phantom experiments with an indocyanine green (ICG)-containing target confirm the simulation findings. In addition, we performed a series of phantom experiments with low ICG concentration (0.1, 0.2, 0.4, 0.6 and 1.0 microM) in the target to systematically evaluate the quantitative accuracy of our FMT approach. The results indicate that, with the knowledge of optical property distribution, the accuracy of the recovered fluorophore concentration is improved significantly over that without such a priori information. In particular absolute value of mu(a(x-->m) ) from our DOT guided FMT are quantitatively consistent with that obtained using spectroscopic methods.  相似文献   

2.
B He  L Xi  SR Samuelson  H Xie  L Yang  H Jiang 《Applied optics》2012,51(20):4678-4683
A novel handheld probe based on a microelectromechanical systems (MEMS) scanning mirror for three-dimensional (3D) fluorescence molecular tomography (FMT) is described. The miniaturized probe consists of a MEMS mirror for delivering an excitation light beam to multiple preselected points at the tissue surface and an optical fiber array for collecting the fluorescent emission light from the tissue. Several phantom experiments based on indocyanine green, an FDA approved near-infrared (NIR) fluorescent dye, were conducted to assess the imaging ability of this device. Tumor-bearing mice with systematically injected tumor-targeted NIR fluorescent probes were scanned to further demonstrate the ability of this MEMS-based FMT for imaging small animals.  相似文献   

3.
Yang J  Zhang T  Yang H  Jiang H 《Applied optics》2012,51(16):3461-3469
We describe a multispectral continuous-wave diffuse optical tomography (DOT) system that can be used for in vivo three-dimensional (3-D) imaging of seizure dynamics. Fast 3-D data acquisition is realized through a time multiplexing approach based on a parallel lighting configuration--our system can achieve 0.12 ms per source per wavelength and up to a 14 Hz sampling rate for a full set of data for 3-D DOT image reconstruction. The system is validated using both static and dynamic tissue-like phantoms. An initial in vivo experiment using a rat model of seizure is also demonstrated.  相似文献   

4.
Y Zhang  X Cao  Y Xu  Q Liu  Y Zhang  J Luo  X Liu  J Bai 《Applied optics》2012,51(21):5044-5050
A method to visualize and quantify fluorescence resonance energy transfer (FRET) in scattering media is proposed. It combines the ratiometric FRET method with fluorescence molecular tomography (FMT) in continuous wave (CW) mode. To evaluate the performance of the proposed method, experiments on a tissue-mimicking phantom are carried out. The results demonstrate that the proposed approach is capable of visualizing and quantifying the FRET distribution in scattering media, which implies the further application of the ratiometric assay in in vivo studies.  相似文献   

5.
Noncontact fluorescence diffuse optical tomography of heterogeneous media   总被引:2,自引:0,他引:2  
Fluorescence-enhanced diffuse optical tomography is expected to be useful to the collection of functional information from small animal models. This technique is currently limited by the extent of tissue heterogeneity and management of the shape of the animals. We propose an approach based on the reconstruction of object heterogeneity, which provides an original solution to the two problems. Three evaluation campaigns are described: the first two were performed on phantoms designed to test the reconstructions in highly heterogeneous media and noncontact geometries; the third was conducted on mice with lung tumors to test fluorescence yield reconstruction feasibility in vivo.  相似文献   

6.
7.
In vivo monitoring techniques are needed to estimate the amount of an actinide in the skeleton in addition to that in the lungs and liver. Skull counting with external detectors has been a standard procedure for this purpose. Realistic skull phantoms are normally used to calibrate the counting systems. However, the fabrication of realistic phantoms is extremely difficult and expensive. Therefore, a theoretical approach based on Monte Carlo methods in conjunction with a Cristy mathematical phantom has been examined for assessing skull burdens of actinides. A computer program that generates surface sources of actinides on the skull and simulates low-energy photon transport in the heterogeneous media of the head region of the Cristy phantom was developed for this purpose. The program determines the observable pulse height spectrum of the detector and the corresponding calibration factors for different counting geometries. The computer program was used to generate the pulse height spectra and the corresponding calibration factors of 20 cm and 15 cm diameter phoswich detectors, each positioned on the left and right sides and on the top of the head region of the Cristy phantom, whose skull surfaces were assumed to have a uniform distribution of 241Am. The computed calibration factor for a counting geometry consisting of three phoswich detectors (15 cm diameter each) surrounding the phantom's skull was found to be in excellent agreement with the experimental results obtained for the same geometry using a realistic physical skull phantom. This provided a validation of the realistic design of the skull in the Cristy phantom, implying that the results reported in this paper could be used for in vivo measurements of skull burdens of 241Am for the stated counting geometry.  相似文献   

8.
基于时间相关单光子计数(TCSPC)技术原理,研究了一套面向早期乳腺癌检测的时域荧光层析成像系统,系统采用非接触式空间光扫描测量方式,相对于传统的光纤接触式测量方法,可增大空间采样量、减小测量误差、提高空间分辨率.通过仿体实验对系统的成像质量进行了验证,结果表明:单目标仿体实验能较好地对荧光产率与寿命进行重建;在双目标仿体荧光产率的重建中,可有效对中心距为20mm、边距为15mm的目标体进行分辨,且对不同浓度荧光剂目标的重建具有较好的线性.实验结果证明系统应用于乳腺检测的可行性,进一步发展可有望应用于临床乳腺成像中.  相似文献   

9.
Roy R  Sevick-Muraca EM 《Applied optics》2001,40(13):2206-2215
The development of near-infrared (NIR) optical imaging for biomedical optical imaging is hampered by the computational intensiveness of large-scale three-dimensional (3-D) image reconstruction and the potential lack of endogenous contrast for detection of relevant tissue features. In this contribution the inverse optical imaging problem is formulated in three dimensions in a noncompressive geometry as a simple-bound constrained minimization problem in order to recover the interior fluorescence properties of exogenous contrast agent from frequency-domain photon migration measurements at the boundary. The solution of the forward optical diffusion problem for the frustum shape containing fluorescence inclusions of 10:1 contrast is accomplished by use of the Galerkin finite-element formulation. The inverse approach employs the truncated Newton method with trust region and a modification of automatic reverse differentiation to speed the computation of the optimization problem. The image-reconstruction results confirm that the constrained minimization may offer a more logical approach for the 3-D optical imaging problem than unconstrained optimization.  相似文献   

10.
Han D  Yang X  Liu K  Qin C  Zhang B  Ma X  Tian J 《Applied optics》2010,49(36):6930-6937
Fluorescence molecular tomography (FMT) is a promising technique for in vivo small animal imaging. In this paper, the sparsity of the fluorescent sources is considered as the a priori information and is promoted by incorporating L1 regularization. Then a reconstruction algorithm based on stagewise orthogonal matching pursuit is proposed, which treats the FMT problem as the basis pursuit problem. To evaluate this method, we compare it to the iterated-shrinkage-based algorithm with L1 regularization. Numerical simulations and physical experiments show that the proposed method can obtain comparable or even slightly better results. More importantly, the proposed method was at least 2 orders of magnitude faster in these experiments, which makes it a practical reconstruction algorithm.  相似文献   

11.
Traditional chemical analysis based on laser plasma spectroscopy (LPS) requires time-gated detectors, to avoid the initial signal from the hot plasma. These detectors are expensive and often need to be cooled and protected against vapor condensation. We suggest a low-cost setup that may replace these gated detectors, while maintaining acceptable analytical performance. The proposed setup is a result of investigation of plasma-front propagation in LPS analysis. It is known that the LPS plasma propagation is similar to the shock wave propagation after a strong explosion in the atmosphere. We found that the propagation of the plasma fits well the Sedov blast wave theory, providing a good agreement between the theoretical and experimental figures. A proper observation geometry, which is perpendicular to the plasma expansion vector, enables converting spatial to temporal resolution. We take advantage of the fact that the plasma reaches a given distance above the analyzed surface at a certain time delay. Therefore, a single optical fiber, positioned at a well-defined geometry, can provide spectral information corresponding to a certain time delay. A multifiber imaging spectrometer provides information corresponding to a series of delay times, which is adequate for analysis of a variety of matrixes. It was found that the performance of the nongated detector observing a narrow solid angle is similar to that of a gated one observing the whole plasma. For one particular example, observing the plasma from a distance of 4.5 mm is equivalent to a delay of 4 micros and integration time of 2 mircos. The ratio of spectral lines of two elements was investigated using the spatially resolved (nongated) setup, and it was found that this mode is advantageous when internal calibration is applied. It was concluded that sensitive LPS analyses can be carried out by less expensive (nongated) detectors.  相似文献   

12.
We model the capability of a small (6-optode) time-resolved diffuse optical tomography (DOT) system to infer baseline absorption and reduced scattering coefficients of the tissues of the human head (scalp, skull, and brain). Our heterogeneous three-dimensional diffusion forward model uses tissue geometry from segmented magnetic resonance (MR) data. Handling the inverse problem by use of Bayesian inference and introducing a realistic noise model, we predict coefficient error bars in terms of detected photon number and assumed model error. We demonstrate the large improvement that a MR-segmented model can provide: 2-10% error in brain coefficients (for 2 x 10(6) photons, 5% model error). We sample from the exact posterior and show robustness to numerical model error. This opens up the possibility of simultaneous DOT and MR for quantitative cortically constrained functional neuroimaging.  相似文献   

13.
Time-resolved Fourier optical diffuse tomography is a novel approach for imaging of objects in a highly scattering turbid medium with use of an incident (near) plane wave. The theory of the propagation of spatial Fourier components of the scattered wave field is presented, along with a fast algorithm for three-dimensional reconstruction in a parallel planar geometry. Examples of successful reconstructions of simulated hidden absorptive or scattering objects embedded inside a human-tissue-like semi-infinite turbid medium are provided.  相似文献   

14.
Yuan Z  Jiang H 《Applied optics》2007,46(14):2757-2768
What we believe to be a novel 3D diffuse optical tomography scheme is developed to reconstruct images of both absorption and scattering coefficients of finger joint systems. Compared with our previous reconstruction method, the improved 3D algorithm employs both modified Newton methods and an enhanced initial value optimization scheme to recover the optical properties of highly heterogeneous media. The developed approach is tested using simulated, phantom, and in vivo measurement data. The recovered results suggest that the improved approach is able to provide quantitatively better images than our previous algorithm for optical tomography reconstruction.  相似文献   

15.
Subsurface tomography with diffuse light has been investigated with a noncontact approach to characterize the performance of absorption and fluorescence imaging. Using both simulations and experiments, the reconstruction of local subsurface heterogeneity is demonstrated, but the recovery of target size and fluorophore concentration is not linear when changes in depth occur, whereas the mean position of the object for experimental fluorescent and absorber targets is accurate to within 0.5 and 1.45 mm when located within the first 10 mm below the surface. Improvements in the linearity of the response with depth appear to remain challenging and may ultimately limit the approach to detection rather than characterization applications. However, increases in tissue curvature and/or the addition of prior information are expected to improve the linearity of the response. The potential for this type of imaging technique to serve as a surgical guide is highlighted.  相似文献   

16.
Hampel U  Schleicher E  Freyer R 《Applied optics》2002,41(19):3816-3826
Optical tomography is a potential diagnostic method for visualizing optical properties of tissues in vivo. We present an optical tomography method that has been designed for imaging of the human testes, particularly for spectroscopic tumor differentiation. In this application we need to compute three-dimensional distributions of the optical contrast (absorption coefficient) in the tissue in real time. Thus we have given special care to elaborate an efficient inverse algorithm that takes the limitations of spatial resolution and data space point density into account. Our inverse solution is based on a linearization approach and a dedicated object space discretization. Furthermore, we introduce the concept of fuzzy voxels, which enables a reconstruction-inherent image smoothing.  相似文献   

17.
Given the wavelength dependence of sample optical properties and the selective sampling of surface emission angles by noncontact imaging systems, differences in angular profiles due to excitation angle and optical properties can distort relative emission intensities acquired at different wavelengths. To investigate this potentiality, angular profiles of diffuse reflectance and fluorescence emission from turbid media were evaluated experimentally and by Monte Carlo simulation for a range of incident excitation angles and sample optical properties. For emission collected within the limits of a semi-infinite excitation region, normalized angular emission profiles are symmetric, roughly Lambertian, and only weakly dependent on sample optical properties for fluorescence at all excitation angles and for diffuse reflectance at small excitation angles relative to the surface normal. Fluorescence and diffuse reflectance within the emission plane orthogonal to the oblique component of the excitation also possess this symmetric form. Diffuse reflectance within the incidence plane is biased away from the excitation source for large excitation angles. The degree of bias depends on the scattering anisotropy and albedo of the sample and results from the correlation between photon directions upon entrance and emission. Given the strong dependence of the diffuse reflectance angular emission profile shape on incident excitation angle and sample optical properties, excitation and collection geometry has the potential to induce distortions within diffuse reflectance spectra unrelated to tissue characteristics.  相似文献   

18.
Wang Y  Wang RK 《Applied optics》2007,46(27):6815-6820
A new optical system for transmission optical projection tomography (TOPT) is presented to reduce the divergence of the projection data from the true parallel projections. This is performed by introducing an iris at the back focus of the objective lens. The influence of the defocusing on TOPT is demonstrated by computational simulations and experiments. We compare the performances of the new and conventional TOPT systems in order to optimize the optical system for three-dimensional imaging of the embryos of small animals. The optimal imaging performance is given by the new system with numerical apertures between 0.007 and 0.014, with which the spatial resolution of 25 microm is achieved. The optimal configuration is validated by TOPT of a phantom sample and a fixed five-day chick embryo.  相似文献   

19.
Xu Y  Gu X  Fajardo LL  Jiang H 《Applied optics》2003,42(16):3163-3169
We report on in vivo absorption and scattering imaging of a human breast cyst and implant, using a reconstruction algorithm based on our third-order diffusion equations. To validate these in vivo images, a series of phantom experiments were conducted, in which we used low-absorbing and low-scattering heterogeneities to mimic a breast cyst or implant. These heterogeneities or targets were composed of pure water or a mixture of water and very dilute Intralipid (0.05% and 0.1%). The phantom experiment confirmed the quantitative imaging capability of our improved algorithm for reconstructing heterogeneities where the conventional diffusion approximation is inadequate. Pilot clinical results from female volunteers indicate that enhanced diffuse optical tomography can quantitatively image findings such as breast cysts or implants in which the absorption and scattering coefficients are usually low.  相似文献   

20.
Zhao H  Gao F  Tanikawa Y  Homma K  Yamada Y 《Applied optics》2005,44(10):1905-1916
We present in vivo images of near-infrared (NIR) diffuse optical tomography (DOT) of human lower legs and forearm to validate the dual functions of a time-resolved (TR) NIR DOT in clinical diagnosis, i.e., to provide anatomical and functional information simultaneously. The NIR DOT system is composed of time-correlated single-photon-counting channels, and the image reconstruction algorithm is based on the modified generalized pulsed spectral technique, which effectively incorporates the TR data with reasonable computation time. The reconstructed scattering images of both the lower legs and the forearm revealed their anatomies, in which the bones were clearly distinguished from the muscles. In the absorption images, some of the blood vessels were observable. In the functional imaging, a subject was requested to do handgripping exercise to stimulate physiological changes in the forearm tissue. The images of oxyhemoglobin, deoxyhemoglobin, and total hemoglobin concentration changes in the forearm were obtained from the differential images of the absorption at three wavelengths between the exercise and the rest states, which were reconstructed with a differential imaging scheme. These images showed increases in both blood volume and oxyhemoglobin concentration in the arteries and simultaneously showed hypoxia in the corresponding muscles. All the results have demonstrated the capability of TR NIR DOT by reconstruction of the absolute images of the scattering and the absorption with a high spatial resolution that finally provided both the anatomical and functional information inside bulky biological tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号