首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
This article presents an effective hybrid cuckoo search and genetic algorithm (HCSGA) for solving engineering design optimization problems involving problem-specific constraints and mixed variables such as integer, discrete and continuous variables. The proposed algorithm, HCSGA, is first applied to 13 standard benchmark constrained optimization functions and subsequently used to solve three well-known design problems reported in the literature. The numerical results obtained by HCSGA show competitive performance with respect to recent algorithms for constrained design optimization problems.  相似文献   

2.
Multipoint approximation method (MAM) focuses on the development of metamodels for the objective and constraint functions in solving a mid-range optimization problem within a trust region. To develop an optimization technique applicable to mixed integer-continuous design optimization problems in which the objective and constraint functions are computationally expensive and could be impossible to evaluate at some combinations of design variables, a simple and efficient algorithm, coordinate search, is implemented in the MAM. This discrete optimization capability is examined by the well established benchmark problem and its effectiveness is also evaluated as the discreteness interval for discrete design variables is increased from 0.2 to 1. Furthermore, an application to the optimization of a lattice composite fuselage structure where one of design variables (number of helical ribs) is integer is also presented to demonstrate the efficiency of this capability.  相似文献   

3.
S. F. Hwang  R. S. He 《工程优选》2013,45(7):833-852
A hybrid optimization algorithm which combines the respective merits of the genetic algorithm and the simulated annealing algorithm is proposed. The proposed algorithm incorporates adaptive mechanisms designed to adjust the probabilities of the cross-over and mutation operators such that its hill-climbing ability towards the optimum solution is improved. The algorithm is used to optimize the weight of four planar or space truss structures and the results are compared with those obtained using other well-known optimization schemes. The evaluation trials investigate the performance of the algorithm in optimizing over discrete sizing variables only and over both discrete sizing variables and continuous configuration variables. The results show that the proposed algorithm consistently outperforms the other optimization methods in terms of its weight-saving capabilities. It is also shown that the global searching ability and convergence speed of the proposed algorithm are significantly improved by the inclusion of adaptive mechanisms to adjust the values of the genetic operators. Hence the hybrid algorithm provides an efficient and robust technique for solving engineering design optimization problems.  相似文献   

4.
A classifier-guided sampling (CGS) method is introduced for solving engineering design optimization problems with discrete and/or continuous variables and continuous and/or discontinuous responses. The method merges concepts from metamodel-guided sampling and population-based optimization algorithms. The CGS method uses a Bayesian network classifier for predicting the performance of new designs based on a set of known observations or training points. Unlike most metamodelling techniques, however, the classifier assigns a categorical class label to a new design, rather than predicting the resulting response in continuous space, and thereby accommodates non-differentiable and discontinuous functions of discrete or categorical variables. The CGS method uses these classifiers to guide a population-based sampling process towards combinations of discrete and/or continuous variable values with a high probability of yielding preferred performance. Accordingly, the CGS method is appropriate for discrete/discontinuous design problems that are ill suited for conventional metamodelling techniques and too computationally expensive to be solved by population-based algorithms alone. The rates of convergence and computational properties of the CGS method are investigated when applied to a set of discrete variable optimization problems. Results show that the CGS method significantly improves the rate of convergence towards known global optima, on average, compared with genetic algorithms.  相似文献   

5.
A multilevel genetic algorithm (MLGA) is proposed in this paper for solving the kind of optimization problems which are multilevel structures in nature and have features of mixed‐discrete design variables, multi‐modal and non‐continuous objective functions, etc. Firstly, the formulation of the mixed‐discrete multilevel optimization problems is presented. Secondly, the architecture and implementation of MLGA are described. Thirdly, the algorithm is applied to two multilevel optimization problems. The first one is a three‐level optimization problem in which the optimization of the number of actuators, the positions of actuators and the control parameters are considered in different levels. An actively controlled tall building subjected to strong wind action is considered to investigate the effectiveness of the proposed algorithm. The second application considers a combinatorial optimization problem in which the number and configuration of actuators are optimized simultaneously, an actively controlled building under earthquake excitations is adopted for this case study. Finally, some results and discussions about the application of the proposed algorithm are presented. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
Many methods have been developed and are in use for structural size optimization problems, in which the cross-sectional areas or sizing variables are usually assumed to be continuous. In most practical structural engineering design problems, however, the design variables are discrete. This paper proposes an efficient optimization method for structures with discrete-sized variables based on the harmony search (HS) heuristic algorithm. The recently developed HS algorithm was conceptualized using the musical process of searching for a perfect state of harmony. It uses a stochastic random search instead of a gradient search so that derivative information is unnecessary. In this article, a discrete search strategy using the HS algorithm is presented in detail and its effectiveness and robustness, as compared to current discrete optimization methods, are demonstrated through several standard truss examples. The numerical results reveal that the proposed method is a powerful search and design optimization tool for structures with discrete-sized members, and may yield better solutions than those obtained using current methods.  相似文献   

7.
This work presents an engineering method for optimizing structures made of bars, beams, plates, or a combination of those components. Corresponding problems involve both continuous (size) and discrete (topology) variables. Using a branched multipoint approximate function, which involves such mixed variables, a series of sequential approximate problems are constructed to make the primal problem explicit. To solve the approximate problems, genetic algorithm (GA) is utilized to optimize discrete variables, and when calculating individual fitness values in GA, a second-level approximate problem only involving retained continuous variables is built to optimize continuous variables. The solution to the second-level approximate problem can be easily obtained with dual methods. Structural analyses are only needed before improving the branched approximate functions in the iteration cycles. The method aims at optimal design of discrete structures consisting of bars, beams, plates, or other components. Numerical examples are given to illustrate its effectiveness, including frame topology optimization, layout optimization of stiffeners modeled with beams or shells, concurrent layout optimization of beam and shell components, and an application in a microsatellite structure. Optimization results show that the number of structural analyses is dramatically decreased when compared with pure GA while even comparable to pure sizing optimization.  相似文献   

8.
One of the first multiple objective versions of the tabu search (TS) algorithm is proposed by the author. The idea of applying TS to multiple objective optimization is inspired from its solution structure. TS works with more than one solution (neighbourhood solutions) at a time and this situation gives the opportunity to evaluate multiple objectives simultaneously in one run. The selection and updating stages are modified to enable the original TS algorithm to work with more than one objective. In this paper, the multiple objective tabu search (MOTS) algorithm is applied to multiple objective non‐linear optimization problems with continuous variables using a simple neighbourhood strategy. The algorithm is applied to four mechanical components design problems. The results are compared with several other solution techniques including multiple objective genetic algorithms. It is observed that MOTS is able to find better and much wider spread of solutions than the reported ones. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
In general design optimization problems, it is usually assumed that the design variables are continuous. However, many practical problems in engineering design require considering the design variables as integer or discrete values. The presence of discrete and integer variables along with continuous variables adds to the complexity of the optimization problem. Very few of the existing methods can yield a globally optimal solution when the objective functions are non-convex and non-differentiable. This article presents a mixed–discrete harmony search approach for solving these nonlinear optimization problems which contain integer, discrete and continuous variables. Some engineering design examples are also presented to demonstrate the effectiveness of the proposed method.  相似文献   

10.
This paper presents a multi-agent search technique to design an optimal composite box-beam helicopter rotor blade. The search technique is called particle swarm optimization (‘inspired by the choreography of a bird flock’). The continuous geometry parameters (cross-sectional dimensions) and discrete ply angles of the box-beams are considered as design variables. The objective of the design problem is to achieve (a) specified stiffness value and (b) maximum elastic coupling. The presence of maximum elastic coupling in the composite box-beam increases the aero-elastic stability of the helicopter rotor blade. The multi-objective design problem is formulated as a combinatorial optimization problem and solved collectively using particle swarm optimization technique. The optimal geometry and ply angles are obtained for a composite box-beam design with ply angle discretizations of 10°, 15° and 45°. The performance and computational efficiency of the proposed particle swarm optimization approach is compared with various genetic algorithm based design approaches. The simulation results clearly show that the particle swarm optimization algorithm provides better solutions in terms of performance and computational time than the genetic algorithm based approaches.  相似文献   

11.
This study proposes particle swarm optimization (PSO) based algorithms to solve multi-objective engineering optimization problems involving continuous, discrete and/or mixed design variables. The original PSO algorithm is modified to include dynamic maximum velocity function and bounce method to enhance the computational efficiency and solution accuracy. The algorithm uses a closest discrete approach (CDA) to solve optimization problems with discrete design variables. A modified game theory (MGT) approach, coupled with the modified PSO, is used to solve multi-objective optimization problems. A dynamic penalty function is used to handle constraints in the optimization problem. The methodologies proposed are illustrated by several engineering applications and the results obtained are compared with those reported in the literature.  相似文献   

12.
Natee Panagant 《工程优选》2018,50(10):1645-1661
A hybrid adaptive optimization algorithm based on integrating grey wolf optimization into adaptive differential evolution with fully stressed design (FSD) local search is presented in this article. Hybrid reproduction and control parameter adaptation strategies are employed to increase the performance of the algorithm. The proposed algorithm, called fully stressed design–grey wolf–adaptive differential evolution (FSD-GWADE), is demonstrated to tackle a variety of truss optimization problems. The problems have mixed continuous/discrete design variables that are assigned as simultaneous topology, shape and sizing design variables. FSD-GWADE provides competitive results and gives superior results at a higher success rate than the previous FSD-based algorithm.  相似文献   

13.
This paper describes a methodology based on genetic algorithms (GA) and experiments plan to optimize the availability and the cost of reparable parallel-series systems. It is a NP-hard problem of multi-objective combinatorial optimization, modeled with continuous and discrete variables. By using the weighting technique, the problem is transformed into a single-objective optimization problem whose constraints are then relaxed by the exterior penalty technique. We then propose a search of solution through GA, whose parameters are adjusted using experiments plan technique. A numerical example is used to assess the method.  相似文献   

14.
J. A. BLAND 《工程优选》2013,45(4):425-443
Ant colony optimization (ACO) is a relatively new heuristic combinatorial optimization algorithm in which the search process is a stochastic procedure that incorporates positive feedback of accumulated information. The positive feedback (;i.e., autocatalysis) facility is a feature of ACO which gives an emergent search procedure such that the (common) problem of algorithm termination at local optima may be avoided and search for a global optimum is possible.

The ACO algorithm is motivated by analogy with natural phenomena, in particular, the ability of a colony of ants to ‘optimize’ their collective endeavours. In this paper the biological background for ACO is explained and its computational implementation is presented in a structural design context. The particular implementation of ACO makes use of a tabu search (TS) local improvement phase to give a computationally enhanced algorithm (ACOTS).

In this paper ACOTS is applied to the optimal structural design, in terms of weight minimization, of a 25-bar space truss. The design variables are the cross-sectional areas of the bars, which take discrete values. Numerical investigation of the 25-bar space truss gave the best (i.e., lowest to-date) minimum weight value. This example provides evidence that ACOTS is a useful and technically viable optimization technique for discrete-variable optimal structural design.  相似文献   

15.
Genetic searches often use randomly generated initial populations to maximize diversity and enable a thorough sampling of the design space. While many of these initial configurations perform poorly, the trade-off between population diversity and solution quality is typically acceptable for small-scale problems. Navigating complex design spaces, however, often requires computationally intelligent approaches that improve solution quality. This article draws on research advances in market-based product design and heuristic optimization to strategically construct ‘targeted’ initial populations. Targeted initial designs are created using respondent-level part-worths estimated from discrete choice models. These designs are then integrated into a traditional genetic search. Two case study problems of differing complexity are presented to illustrate the benefits of this approach. In both problems, targeted populations lead to computational savings and product configurations with improved market share of preferences. Future research efforts to tailor this approach and extend it towards multiple objectives are also discussed.  相似文献   

16.
There are three characteristics in engineering design optimization problems: (1) the design variables are often discrete physical quantities; (2) the constraint functions often cannot be expressed analytically in terms of design variables; (3) in many engineering design applications, critical constraints are often ‘pass–fail’, ‘0–1’ type binary constraints. This paper presents a sequential approximation method specifically for engineering optimization problems with the three characteristics. In this method a back-propagation neural network is trained to simulate a rough map of the feasible domain formed by the constraints using a few representative training data. A training data point consists of a discrete design point and whether this design point is feasible or infeasible. Function values of the constraints are not required. A search algorithm then searches for the optimal point in the feasible domain simulated by the neural network. This new design point is checked against the true constraints to see whether it is feasible, and is then added to the training set. The neural network is trained again with this added information, in the hope that the network will better simulate the boundary of the feasible domain of the true optimization problem. Then a further search is made for the optimal point in this new approximated feasible domain. This process continues in an iterative manner until the approximate model locates the same optimal point in consecutive iterations. A restart strategy is also employed so that the method may have a better chance to reach a global optimum. Design examples with large discrete design spaces and implicit constraints are solved to demonstrate the practicality of this method.  相似文献   

17.
Many real-world engineering design problems involve the simultaneous optimization of several conflicting objectives. In this paper, a method combining the struggle genetic crowding algorithm with Pareto-based population ranking is proposed to elicit trade-off frontiers. The new method has been tested on a variety of published problems, reliably locating both discontinuous Pareto frontiers as well as multiple Pareto frontiers in multi-modal search spaces. Other published multi-objective genetic algorithms are less robust in locating both global and local Pareto frontiers in a single optimization. For example, in a multi-modal test problem a previously published non-dominated sorting GA (NSGA) located the global Pareto frontier in 41% of the optimizations, while the proposed method located both global and local frontiers in all test runs. Additionally, the algorithm requires little problem specific tuning of parameters.  相似文献   

18.
A search procedure with a philosophical basis in molecular biology is adapted for solving single and multiobjective structural optimization problems. This procedure, known as a genetic algorithm (GA). utilizes a blending of the principles of natural genetics and natural selection. A lack of dependence on the gradient information makes GAs less susceptible to pitfalls of convergence to a local optimum. To model the multiple objective functions in the problem formulation, a co-operative game theoretic approach is proposed. Examples dealing with single and multiobjective geometrical design of structures with discrete–continuous design variables, and using artificial genetic search are presented. Simulation results indicate that GAs converge to optimum solutions by searching only a small fraction of the solution space. The optimum solutions obtained using GAs compare favourably with optimum solutions obtained using gradient-based search techniques. The results indicate that the efficiency and power of GAs can be effectively utilized to solve a broad spectrum of design optimization problems with discrete and continuous variables with similar efficiency.  相似文献   

19.
离散变量结构优化设计的拟满应力遗传算法   总被引:23,自引:0,他引:23  
以力学准则法为基础,提出了一种求解离散变量结构优化设计的拟满应力方法;这种方法能直接求解具有应力约束和几何约束的离散变量结构优化设计问题。通过在遗传算法中定义拟满应力算子,建立了一种离散变量结构优化设计的混合遗传算法拟满应力遗传算法。算例表明:这种混合遗传算法对于离散变量结构优化设计问题具有较高的计算效率。  相似文献   

20.
J.C. Li  B. Gong 《工程优选》2016,48(8):1378-1400
Optimal development of shale gas fields involves designing a most productive fracturing network for hydraulic stimulation processes and operating wells appropriately throughout the production time. A hydraulic fracturing network design—determining well placement, number of fracturing stages, and fracture lengths—is defined by specifying a set of integer ordered blocks to drill wells and create fractures in a discrete shale gas reservoir model. The well control variables such as bottom hole pressures or production rates for well operations are real valued. Shale gas development problems, therefore, can be mathematically formulated with mixed-integer optimization models. A shale gas reservoir simulator is used to evaluate the production performance for a hydraulic fracturing and well control plan. To find the optimal fracturing design and well operation is challenging because the problem is a mixed integer optimization problem and entails computationally expensive reservoir simulation. A dynamic simplex interpolation-based alternate subspace (DSIAS) search method is applied for mixed integer optimization problems associated with shale gas development projects. The optimization performance is demonstrated with the example case of the development of the Barnett Shale field. The optimization results of DSIAS are compared with those of a pattern search algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号