首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The films of poly(glycolic acid) grafted chitosan were prepared without using a catalyst to improve the degradable property of chitosan. The films were characterized by Fourier transform-infrared spectroscopy and X-ray photoelectron spectroscopy (XPS). The degradation of the poly(glycolic acid) grafted chitosan films were investigated in the lysozyme solution. In vitro degradation tests revealed that the degradation rate of poly(glycolic acid) grafted chitosan films increased dramatically compared with chitosan. The degradation rate of poly(glycolic acid) grafted chitosan films gradually increased with the increasing of the molar ratio of glycolic acid to chitosan. Additionally, the poly(glycolic acid) grafted chitosan films have good biocompatibility, as demonstrated by in vitro cytotoxicity of the extraction fluids. The biocompatible and biodegradable poly(glycolic acid) grafted chitosan would be an effective material with controllable degradation rate to meet the diverse needs in biomedical fields.  相似文献   

2.
A preliminary cell culture study of human keratinocytes (HK) on solvent-cast and biaxially stretched poly(-caprolactone) (PCL) films was carried out. Cell attachment and proliferation on solvent-cast films was compared with commercially available wound dressings while cell attachment, proliferation and viability on biaxially stretched films were assessed using light, confocal laser and scanning electron microscopy (CLM and SEM). Solvent-cast sheets were biaxially stretched to produce 5–15-μm-thick films. Biaxially stretched films were shown to be better epidermal substrates due to the better flexibility and strength to mass ratio than solvent-cast sheets. Images obtained showed that the cells attached and proliferated on poly(-caprolactone) films, and maintained high percentage of viability throughout the culture period. Keratinocytes exhibited healthy cobblestone morphology and proliferated as continuous monolayers. These results indicated that poly(-caprolactone) films would support the attachment and proliferation of human keratinocytes and have the potential to be applied as a matrix material for tissue engineering an epidermal equivalent.  相似文献   

3.
The in vitro degradation of biodegradable polymer/ceramic composites was assessed in two different environments under both static and pseudodynamic conditions. The blends, consisting of polycaprolactone, poly(lactic-co-glycolic acid), and hydroxyapatite, have potential use in bone tissue engineering applications, thus it is essential to establish a standardized method of characterizing the degradation of new biomaterials. In this study, the variation in polymer blend ratio was examined to observe a change in degradation rate. The porous blends were degraded in water and serum-containing media. A previous study examined in vitro degradation in serum-free buffer. Molecular weight loss, gravimetric weight loss, pH changes and morphological changes were evaluated. The changes in porosity were observed with scanning electron microscopy and quantitatively assessed using image analysis. There was a significant difference in molecular weight loss and gravimetric weight loss between the blends after 10 weeks in vitro. Blends containing the greatest amount of poly(lactic-co-glycolic acid) degraded most rapidly. © 2001 Kluwer Academic Publishers  相似文献   

4.
The kinetics of degradation and sustained cancer drugs (paclitaxel (PT) and prodigiosin (PG)) release are presented for minirods (each with diameter of ~5 and ~6?mm thick). Drug release and degradation mechanisms were studied from solvent-casted cancer drug-based minirods under in vitro conditions in phosphate buffer solution (PBS) at a pH of 7.4. The immersed minirods were mechanically agitated at 60 revolutions per minute (rpm) under incubation at 37?°C throughout the period of the study. The kinetics of drug release was studied using ultraviolet visible spectrometry (UV-Vis). This was used to determine the amount of drug released at 535?nm for poly(lactic-co-glycolic acid) loaded with prodigiosin (PLGA-PG) samples, and at 210?nm, for paclitaxel-loaded samples (PLGA-PT). The degradation characteristics of PLGA-PG and PLGA-PT are elucidated using optical microscope as well as scanning electron microscope (SEM). Statistical analysis of drug release and degradation mechanisms of PLGA-based minirods were performed. The implications of the results are discussed for potential applications in implantable/degradable structures for multi-pulse cancer drug delivery.  相似文献   

5.
6.
The in vitro degradation behaviour of poly(glycolic acid) (PGA) and its composite films containing poly(DL-lactic acid) (PDLLA) and poly(DL-lactic-co-glycolic acid) (PDLGA) were investigated via mass loss, scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). All the films were prepared by solution casting, using 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) as the solvent. Since the degradation rate of PDLLA is lower than that of PGA, those of the PDLLA/PGA composite films decreased. As a compatibilizer, PDLGA improved the compatibility and hydrolytic stability of PDLLA/PGA composite films. Changes in the composite films indicate that this kind of PGA-based composite biomaterial may be applicable to device design for clinical application in the future.  相似文献   

7.
The material studied was a thermoplastic blend of corn starch with a poly(ethylene-vinyl alcohol) copolymer, SEVA-C. The influence of both the material's exposed surface and enzyme concentration on degradation kinetics was studied. As alpha-amylase is present in the blood plasma, experiments were performed, varying the material thickness and the alpha-amylase between 50 and 100 units/l, at 37 degrees C, lasting up to 90 days. Four different batches using SEVA-C and starch samples of different thickness were performed. The positive correlation between degradation rate and the exposed material surface was confirmed, since thin films with larger exposed surfaces were degraded faster than thick square plates having the same total mass. The degradation extent depends on the total amount of amorphous starch present in the formulation rather than on the amount of enzyme used and the minimum thickness to ensure maximum degradation was estimated to be close to 0.25 mm.  相似文献   

8.
医用聚乳酸的合成及其管型材料性能的测定   总被引:11,自引:0,他引:11  
本文以无毒的辛酸亚锡作催化剂,将丙交酯聚合成聚乳酸(PLA)。研究了在760~0.05mmHg范围内压力改变对PLA分子量的影响,并将PL制成内径为2mm的管型材料,经热稳定性、机械强度和降解性能等试验,结果都表明此管材可用作引导神经再生导管材料。  相似文献   

9.
In vitro characterization of synthetic scaffolds in the laboratory commonly employs sterilization techniques, such as, ultraviolet light or ethanol (EtOH) soaking. These sterilization methods are not sufficient, however, to gain Regulatory approval for therapeutic use. Neglecting the effects medical grade sterilization may have on material properties could lead to years of research never translating to the clinic. The objective of this study was to ascertain whether medical grade gamma irradiation affected the properties of solvent-cast poly(ε-caprolactone)/poly(d, l-lactic acid) blend films for peripheral nerve repair. Scaffolds were sterilized at eight incremental doses of Gamma radiation (0–45 kGy). With increasing radiation dose, tensile testing identified significant reductions in both maximum tensile strength (>40 %) and strain (>90 %); gel permeation chromatography showed a dose-dependent reduction in polymer molecular weight (>46 %) and differential scanning calorimetry highlighted an increase in crystallinity. NG108-15 nerve cells were cultured up to 7 days on gamma irradiated and EtOH soaked films (control). Scanning electron microscopy showed cells proliferated on all films during this time and confirmed cell morphology was unaffected by sterilization method. However, cellular proliferation and number were greater for gamma irradiated films compared to EtOH soaked. Despite material properties being significantly altered, the in vitro response was encouraging and gamma irradiation may prove effective for medical grade sterilization of films intended for peripheral nerve repair.  相似文献   

10.
Composite films made of poly L/D copolymer and hydroxylapatite (HA) as filler material were made in two different volume percentages. As references pure copolymer films and composite films with magnesium oxide (MgO) were prepared to serve as strongly basic model filler material. All these materials were immersed in phosphate buffered saline to study the effect of filler materials on the degradation rate of the copolymer. Filled films showed less molecular weight decrease than the unfilled films, while lactate release was higher for the filled films than for the unfilled films. This effect implies that the filler materials influence the degradation mechanism by preventing the occurrence of the autocatalytic effect of the acidic endgroups, resulting from hydrolysis of the polymer chains. The polymer chains at the surface of the material are less protected by the filler materials, which causes a more rapid degradation of these chains and a higher lactate release. At the same time composites seem to show an erosion type of degradation rather than bulk degradation in unfilled materials.This paper was accepted for publication after the 1995 Conference of the European Society of Biomaterials, Oporto, Portugal, 10–13 September.  相似文献   

11.
A novel nerve repairing material poly [LA-co.(GIc-alt-Lys)] (PLGL) was synthesized. The viability and growth of Schwann cells (SCs) co-cultured With poly (D, L- lactic acid) (PDLLA) films (control group) and PLGL films were evaluated by MTT assay and SEM observation. Then, contact angle measurement, histological assessment and enzyme-linked immunosorbent assay (ELISA) testing on inflammatory-related cyto- kines such as IL-10 and TGF-β1 were performed. The results showed that, compared with PDLLA, PLGL films possesses better hydrophilicity, biocompatibility, degradation property and less inflammatory reaction. The present study indicated that PLGL scaffolds would meet the requirements of artificial nerve scaffold and have a potential application in the fields of nerve regeneration.  相似文献   

12.
Thin blend polymer films made of poly(3-hexylthiophene-2,5-diyl) (electron donor) and fullerene derivatives as electron acceptors ([6,6]-thienylC61 butyric acid methyl ester and [6,6]-thienylC71 butyric acid methyl ester) are prepared by the spin-coating technique on indium tin oxide covered glass substrates. Time-resolved photo-induced changes of surface potentials are detected by Kelvin force microscopy (KFM). Changes of surface potentials by 10-150 mV reveal different quality and kinetics of charge generation in the two blends in short (minutes) and long (hours) time periods. This is attributed to a combination of electron accumulation, trapping, and organic material degradation under ambient conditions. As KFM characterizes the blend films directly without metal contact layer, it reveals differences in the opto-electronic behavior of the blends, which are not detected by common photovoltaic cell characterization.  相似文献   

13.
This study describes a 3-D computational framework to model stable extension of a macroscopic crack under mode I conditions in ductile metals. The Gurson-Tvergaard dilatant plasticity model for voided materials describes the degradation of material stress capacity. Fixed-size, computational cell elements defined over a thin layer at the crack plane provide an explicit length scale for the continuum damage process. Outside this layer, the material remains undamaged by void growth, consistent with metallurgical observations. An element vanish procedure removes highly voided cells from further consideration in the analysis, thereby creating new tractionfree surfaces which extend the macroscopic crack. The key micro-mechanics parameters are D, the thickness of the computational cell layer, and f 0 , the initial cell porosity. Calibration of these parameters proceeds through analyses of ductile tearing to match R-curves obtained from testing of deep-notch, through-crack bend specimens. The resulting computational model, coupled with refined 3-D meshes, enables the detailed study of non-uniform growth along the crack front and predictions of specimen size, geometry and loading mode effects on tearing resistance, here described by J-a curves. Computational and experimental studies are described for shallow and deep-notch SE(B) specimens having side grooves and for a conventional C(T) specimen without side grooves. The computational models prove capable of predicting the measured R-curves, post-test measured crack profiles, and measured load-displacement records.  相似文献   

14.
It has been well documented that the use of dry optics in depth profiling by confocal Raman microspectroscopy significantly distorts the laser focal volume, thus negatively affecting the spatial resolution of the measurements. In that case, the resulting in-depth confocal profile is an outcome of several contributions: the broadening of the laser spot due to instrumental factors and diffraction, the spreading of the illuminated region due to refraction of the laser beam at the sample surface, and the influence of the confocal aperture in the collection path of the laser beam. Everall and Batchelder et al. developed simple models that describe the effect of the last two factors, i.e., laser refraction and the diameter of the pinhole aperture, on the confocal profile. In this work, we compare these theoretical predictions with experimental data obtained on a series of well-defined planar interfaces, generated by contact between thin polyethylene (PE) films (35, 53, 75, and 105 microm thickness) and a much thicker poly(methyl methacrylate) (PMMA) piece. We included two refinements in the above-mentioned models: the broadening of the laser spot due to instrumental factors and diffraction and a correction for the overestimation in the decay rate of collection efficiency predicted by Batchelder et al. These refinements were included through a semiempirical approach, consisting of independently measuring the Raman step-response in the absence of refraction by using a silicon wafer and the actual intensity decay of a thick and transparent polymer film. With these improvements, the model reliably reproduces fine features of the confocal profiles for both PE films and PMMA substrates. The results of this work show that these simple models can not only be used to assist data interpretation, but can also be used to quantitatively predict in-depth confocal profiles in experiments carried out with dry optics.  相似文献   

15.
This paper presents a crystal plasticity based finite element analysis employing the new microstructure-based strain hardening model recently presented by Saimoto and Van Houtte (2011) [7] to simulate formability and texture evolution in the commercial aluminum alloy 5754. Simulations are performed to compare the predictive capability of the new hardening model against the common work hardening models using a rate-dependent plasticity formulation. The parameters in the numerical models are calibrated using the X-ray data published by Iadicola et al. (2008) [9] for the aluminum sheet alloy 5754. The predictions of the model for balanced biaxial tension and in-plane plane-strain tests are compared against experimental observations presented in Iadicola et al. (2008) [9]. It is concluded that the new model provides the best predictions of the large strain behavior of Aluminum sheet alloy 5754 subjected to various strain paths.  相似文献   

16.
赵媛  陈宜昭  王娟  黄崇杏 《包装工程》2016,37(11):20-26
目的研究纳米纤维素/聚乳酸(NCC/PLA)复合薄膜在不同降解条件下的降解情况。方法在p H值为3,7,11的溶液及紫外光照射条件下,降解自制的复合薄膜,通过测失重率、扫描电子显微镜观察、X射线光电子能谱分析等手段,分析p H值、光照和NCC的添加与复合材料降解能力间的关系,研究其降解机理,并与纯PLA薄膜对比。结果 NCC/PLA复合薄膜在碱性条件下质量损失最快,酸性稍慢,中性更慢,紫外光照射下最慢,复合薄膜质量损失均比纯PLA薄膜多。在p H值为3和7的溶液及紫外光照射降解后,NCC/PLA复合薄膜氧碳原子数量的比值均比未降解时增大,分别提高了35.16%,36.66%,38.65%。结论 NCC的添加提高了NCC/PLA复合薄膜的降解性能,在不同降解过程中,薄膜表面C原子所占比例减少,相对地O原子所占比例增加,氧碳原子数量的比值增大。  相似文献   

17.
A simple two-step process was used to disperse acid functionalized multi-walled carbon nanotubes (CNTs) in poly(vinylidene fluoride) (PVDF). While the neat solvent-cast PVDF showed coexistence of α- and β-phases; the composite films exhibited only β-phase crystals. Further studies on the crystalline behaviour, using differential scanning calorimetry and small-angle X-ray scattering techniques showed an increase in the percentage of crystalline phase with CNT. The network formed by CNTs in the matrix reduced the macroscopic electrical resistivity of composite films. The dielectric constant increased with CNT loading. Further, these composites were investigated for its electromagnetic wave absorbance (EWA) and strain sensing properties. The EWA properties were studied in the X-band (6–12 GHz) region. A maximum of ~37 dB reflectivity loss at ~9.0 GHz was obtained in a ~25 μm thick PVDF film containing only 0.25 wt% of functionalized CNT. Preliminary studies showed a systematic change in electrical resistance by the application of dynamic bending strain in nanocomposite film. The film also showed a significant improvement in mechanical stiffness owing to efficient stress transfer from matrix to filler, the property desirable for a good strain sensor. In view of the unique combination of EWA and electro-mechanical properties, the nanocomposite films are expected to serve as a multifunctional material for strain sensing in health monitoring as well as in radar absorption.  相似文献   

18.
Drug release characteristics of freeze-dried wafers and solvent-cast films prepared from sodium carboxymethylcellulose have been investigated and compared. In vitro drug dissolution studies were performed using an exchange cell and drug release was measured by UV spectroscopy at 272?nm using distilled water. The dissolution profiles of hydrochlorothiazide from the wafers and films were compared by determining the rates of drug release, estimated from the % release versus time profiles and calculating their difference (f(1)) and similarity (f(2)) factors. The effects of drug loading, polymer content and amount of glycerol (GLY) (films) on the drug release characteristics of both formulations were investigated. Both the wafers and films showed sustained type release profiles that were best explained by the Korsmeyer-Peppas equation. Changes in the concentration of drug and GLY (films) did not significantly alter the release profiles whilst increasing polymer content significantly decreased the rate of drug release from both formulations. The rate of release was faster from the wafers than the corresponding films which could be attributed to differences in the physical microstructure. The results show the potential of employing both formulations in various mucosal drug delivery applications.  相似文献   

19.
The leaching of water-soluble plasticizers from polymeric films prepared by casting and drying of plasticized colloidal polymer dispersions was investigated with respect to the type and concentration of plasticizer (triethyl citrate or triacetin), film thickness, type of colloidal polymer dispersions (acrylic: Eudragit RS30D, RL30D, or L30D; cellulosic: Aquacoat), Eudragit RS30D/RL30D ratio, and method of film preparation (solvent- or pseudolatex-casting). The leaching increased with increasing level of plasticizer as indicated by an increase in the release rate constant while the release rate constant was independent of the film thickness. The leaching was more rapid from Aquacoat films than from Eudragit RS30D films at all plasticizer concentrations. Increasing the amount of the more hydrophilic polymer dispersion, Eudragit RL30D, in mixed Eudragit RS/RL films increased the rate of leaching. The incorporation of propranolol HCl into the polymeric films significantly increased the leaching rate constant when compared to drug-free films. The leaching from pseudolatex-cast films was faster when compared to the leaching from solvent-cast films due to the denser structure of the solvent-cast films.  相似文献   

20.
A multiscale computational homogenization method for the modeling of hydro-mechanical coupling problem for quasi-brittle materials is developed. The present method is based on an asymptotic expansion homogenization combined with the semi-concurrent finite element modelling approach. Modified periodic boundary conditions and a molecular dynamics (MD) based inclusion or filler generation procedure are devised for the hydro-mechanical coupling problem. A modified elastic damage constitutive model and a damage induced permeability law have been developed for the hydraulic fracturing. The statistical convergence of the microscale representative volume element (RVE) model regarding the RVE characteristic size is studied. It was found that the RVE characteristic size is determined by both the mechanical and hydraulic properties of the RVE simultaneously. The present method is validated by the experimental results for brittle material. The damage zone and crack propagation path captured by the present method is compared with the experimental results (Chitrala et al. in J Pet Sci Eng 108:151–161, 2013). The results show that the present method is an effective for the modelling of hydro-mechanical coupling for brittle materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号