首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 171 毫秒
1.
用传统的固相反应烧结法制备了(1-xmol%)BaTiO3-xmol%(Bi0.5Na0.5)TiO3(BBNTx)高温无铅正温度系数电阻( positive temperature coefficient of resistivity, PTCR)陶瓷。X射线衍射表明所有的BBNTx陶瓷形成了单一的四方钙钛矿结构。SEM分析结果显示随着BNT含量的增加, 陶瓷晶粒尺寸减小。空气中烧结的0.2mol% Nb掺杂的BBNT1陶瓷, 室温电阻率为~102 Ω·cm, 电阻突跳为~4.5个数量级, 居里温度为~150℃。氮气中烧结的0.3mol% Nb掺杂的BBNTx(10≤x≤60)陶瓷, 同样具有明显的PTCR效应, 居里温度在180~235℃之间。随着BNT含量的增加, 材料的室温电阻率增大, 同时陶瓷的电阻突跳比下降。  相似文献   

2.
本研究采用BiScO3组分对固相烧结工艺制备的(1-x)(Bi0.5Na0.5)0.935Ba0.065TiO3-xBiScO3(BNBT-xBS)无铅陶瓷进行改性, 考察了BiScO3掺杂含量对陶瓷的微观结构、储能、场致应变和介电等性能的影响。结果表明: 随着BiScO3掺杂含量的增加, BNBT-xBS陶瓷的相结构由三方相与四方相共存演变为伪立方相, 无杂相形成, 且平均晶粒尺寸略有增大; BiScO3组分的引入破坏了BNBT陶瓷铁电畴的长程有序, 表现出弱极化, 且伴随有铁电相到弛豫铁电相的相变过程。BiScO3组分提高了储能和应变性能, 在70 kV/cm电场下其最大储能密度为0.46 J/cm3, 电致应变达到0.25%。介电常数随着掺杂含量的增加逐渐降低, 其介电行为也表明陶瓷具有弛豫铁电体特征; BNBT-xBS陶瓷表现出负温度系数效应, 且在450℃以下具有较好的绝缘性。  相似文献   

3.
马剑  张波萍  陈建银 《无机材料学报》2017,32(10):1035-1041
采用传统固相烧结法制备了0.7BiFeO3-0.3BaTiO3-xBi2O3(0≤x≤0.05)无铅压电陶瓷, 研究了Bi补偿量x和冷却方式对其相结构、微观形貌和综合电学性能的影响。结果表明:所有样品均为菱方相(R)和伪立方相(PC)两相共存, 0≤x≤0.01样品为纯的钙钛矿结构, 且x=0.01样品的两相比例CR/CPC接近1; x>0.01样品中出现富Bi杂相Bi25FeO40。与冷却方式相比, 优化Bi补偿量更有利于提升BFBT-xBi2O3陶瓷的压电性能。随着x增大, d33先增大后减小, 在x=0.01时获得最优值。由于较小的晶粒、较合适的CR/CPC以及较大的残余应变, 水冷BFBT-0.01Bi2O3陶瓷获得了最优的压电性能(d33水冷=141 pC/N、kp=27%)和高TC=507℃。研究结果表明, BFBT基陶瓷有希望成为兼具高压电性能和高TC的无铅压电材料体系之一。  相似文献   

4.
采用传统的固相反应烧结方法制备了稀土Sm3+掺杂的(Bi0.5Na0.5)TiO3无铅压电陶瓷。系统分析了掺杂浓度、烧结温度和离子补偿对发光特性的影响。稀土Sm3+离子的加入实现了(Bi0.5Na0.5)TiO3陶瓷的红绿光发射, 其激发光波段位于400~500 nm范围内, 与已经成熟的蓝光LED芯片的发射光谱充分匹配。当烧结温度为1100℃, Sm3+离子的掺杂浓度为0.015 mol时, 陶瓷样品呈现最强的发光强度。同时, 通过Li+、Na+、K+离子进行电荷补偿, 有效提高了陶瓷样品的发光性能, 发光强度随离子半径增大而增强。可见, Sm3+掺杂的(Bi0.5Na0.5)TiO3材料在光电集成器件中具有很好的应用前景。  相似文献   

5.
铅基压电陶瓷因其优异的压电性能, 被广泛应用于压电器件。其中, 压电驱动器要求压电陶瓷具有较高压电性能并且在电场下具有较高的电致应变和较小的应变滞后。本研究通过施主-受主共掺, 得到高压电性能和低电场应变滞后的PZT陶瓷。采用传统固相反应法制备了(1-x)(Pb0.95Sr0.05)(Zr53Ti47)O3-xBiAlO3+0.2%MnO2陶瓷(掺杂量为质量百分数), 并对其微观结构和压电性能进行了研究。结果表明:BiAlO3掺杂量较少时, 陶瓷中缺陷偶极子的“钉扎”效应使得陶瓷畴壁转动困难, 陶瓷压电性能较弱, 应变滞后也较小。随BiAlO3掺杂量增加, 缺陷偶极子“钉扎”效应减弱, 陶瓷的压电性能和应变滞后随之提高。本实验得到的性能最优组分为x=1.75%, 该组份陶瓷的压电系数d33=504 pC/N, 机电耦合系数kp=0.71, 机械品质因数Qm=281, 居里温度TC=312 ℃, 在10 kV/cm电场下的应变滞后仅为15%, 并且还具有较好的温度稳定性, 是一种具有应用价值的压电驱动器用压电陶瓷材料。  相似文献   

6.
为了在获得较高压电性能的同时又不大大降低陶瓷的居里温度(TC), 设计和制备了Bi0.45Nd0.05(Na0.92Li0.08)0.5ZrO3改性的K0.48Na0.52NbO3系无铅压电陶瓷((1-x)KNN-xBNNLZ), 研究了BNNLZ含量对KNN基无铅压电陶瓷相结构和电学性能的影响。研究结果表明, 所有陶瓷样品均具有较高的居里温度TC(>300℃)。随着BNNLZ含量的增加, 陶瓷的正交-四方相变温度(TO-T)不断向低温方向移动, 而三方-正交相变温度(TR-O)不断向高温方向移动, 最终在陶瓷中形成了三方-四方(R-T)共存相, R-T共存相处于0.05<x<0.07范围。BNNLZ的加入引起陶瓷相结构的演化改变导致压电常数(d33 )、介电常数(εr )、剩余极化强度 (Pr )和机电耦合系数(kp )都先增大后减小, 当x=0.06时陶瓷具有最佳压电性能: d33=313 pC/N, kp=42%, Pr=25.48 μC/cm2, εr=1353, tanδ=2.5%, TC=327℃。  相似文献   

7.
采用固相烧结方法制备了Bi、Co同时取代化学计量比钛酸铋钠基(Bi0.5+x/2Na0.5-x/2)0.94Ba0.06Ti1-xCoxO3无铅压电陶瓷, 研究了材料中A/B位缺陷对其电滞回线和电致应变的影响。结果表明陶瓷具有均一的赝立方结构, 随着掺杂量的增加, 材料铁电-弛豫相转变温度降低, 应变增加。同时材料在疲劳过程中伴随着弛豫相的增多, 在较低电场下产生较大的应变(0.458%), 逆压电常数d33*达到770 pm/V。介电温谱和电滞回线上反常变化与化学计量比陶瓷中产生的A/B位缺陷偶极子密切相关, 并表明这种缺陷偶极子是以氧空位为媒介形成的。  相似文献   

8.
PTC热敏陶瓷的无铅化是绿色智能加热及电路智能保护元件研制的重要前提。为了获得可在空气气氛下烧结且兼具高居里温度和高升阻比的无铅化PTC热敏陶瓷,本工作采用固相法制备了(1-x)BaTiO3-0.5xBi0.5Na0.5TiO3-0.5xBi0.5K0.5TiO3和0.98BaTiO3-0.02yBi0.5Na0.5TiO3-0.02(1-y)Bi0.5K0.5TiO3三元固溶体系无铅PTC热敏陶瓷材料,研究了不同含量的Na和K元素对无铅PTC热敏陶瓷材料的烧结特性和电学性能的影响。结果表明,BNT和BKT均与BaTiO3形成固溶体,随着BNT含量的增加,PTC陶瓷平均晶粒尺寸减小;当BNT和BKT含量相同时,PTC陶瓷可以在较宽的烧结温度范围内实现半导化,且在...  相似文献   

9.
采用固相法将纳米TiO2引入0.94Na1/2Bi1/2TiO3-0.06BaTiO3 (简称NBT-6BT)钙钛矿结构压电陶瓷晶界中, 成功制备出NBT-6BT: xTiO2 (x=0, 0.05, 0.1, 0.2, 0.3) 0-3型复合结构陶瓷, 并系统地研究了掺杂TiO2对陶瓷的结构及压电性能的影响。实验结果表明, 部分TiO2进入晶格内部造成陶瓷单斜相Cc含量减少, 晶体对称性提高; 随着TiO2的掺杂量的增加, 明显提高了NBT-6BT陶瓷的退极化温度。对NBT-6BT:0.1TiO2样品, 在保持一定压电常数(69 pC/N)的前提下, 陶瓷的退极化温度相比纯NBT-6BT提升约88%, 此时介电损耗tanδ=0.044, 表明该材料是一种适用于更高温区间的新型无铅压电材料。  相似文献   

10.
钙锆共掺钛酸钡陶瓷(BCZT)具有优异的介电性能和压电性能, 是一类具有发展潜力的无铅压电陶瓷, 但其压电性能仍无法与铅基陶瓷媲美。为提高压电性能, 本研究对陶瓷材料进行Sn元素掺杂改性((Ba0.85Ca0.15)- (Ti0.9Zr0.1-xSnx)O3, x=0.02~0.07))。晶体结构分析证实所有组分的陶瓷无杂相, 处于正交相与四方相两相共存状态, 并具有较大的c/a; 显微结构分析发现所有陶瓷都很致密, 且平均晶粒尺寸随着Sn含量的增加而增大。当x=0.04时, 陶瓷最致密, 且室温处于准同型相界附近, 因此拥有最佳的电学性能: d33=590 pC•N -1, kp=52.2%, tanδ=0.016, ε T33=5372, d *33=734 pm•V -1, IR=57.8 GΩ•cm。本研究表明: Sn掺杂的BCZT基无铅压电陶瓷具有优异的压电性能, 有望在换能器、机电传感器和驱动器等方面得到应用。  相似文献   

11.
Lead-free (Bi0.5Na0.5)1+xTiO3 ceramics (x = −0.02, −0.01, −0.005, 0, 0.005 and 0.01) were prepared by ordinary sintering. The effect of A-site stoichiometry on the densification, microstructure, dielectric properties, high-temperature impedances, and piezoelectric properties was explored. It was found that the high conductivity of (Bi0.5Na0.5)TiO3 (BNT) ceramics should be mainly attributed to the formation of A-site cation vacancies during sintering. Improved physical and electrical properties can be achieved in the sample with A-site cation excess. The control of the stoichiometry proves to be an effective way to improve BNT ceramics for possible application.  相似文献   

12.
通过溶胶-凝胶工艺在CoFe2O4(简称CFO)粉体表面包覆二氧化锆陶瓷层来阻挡烧结过程中铁磁相与铁电相之间的离子扩散. 包覆后的CFO与0.92(Bi0.5Na0.5)TiO3-0.02(Bi0.5K0.5)TO3-0.06BaTiO3(简称BNBT) 陶瓷粉体分别按照xCFO/(1-x) BNKLABT (质量分数x = 0.05、0.10、0.15、0.20、0.25、0.30)混合均匀, 并用聚乙烯醇为粘结剂模压成圆片; 再经过1050℃烧结制备了铁磁/铁电0-3型复合材料. XRD分析表明: 二氧化锆在高温烧结过程中对离子扩散具有良好的阻挡作用. 复合陶瓷的耐击穿电压大于75kV/cm. 测量结果表明: 复合陶瓷的压电应变常数、机电耦合系数、介电常数和剩余极化随CFO含量的增加而降低; 磁电耦合系数、介电损耗随CFO含量的增加而有所增大. -35mm×1.5mm的复合陶瓷样品(x=0.05)在谐振频率(90kHz)和199kA/m 偏置磁场下的磁电系数为1.39V/A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号