首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 89 毫秒
1.
Density functional theory (DFT) is used to investigate the spin-dependent quantum transport through bended graphene. Bending results in reduced bandgap in graphene and affects the spin transport by increasing current in parallel configuration (PC) resulting in an increase in magnetoresistance (MR). In antiparallel configuration (APC), bending limits the spin-down current, which results in higher magnetoresistance at all biases. In bended graphene, the magnetoresistance obtained is higher than the MR obtained in pristine and twisted graphene-based structure. High spin filtration for PC and APC is observed in the case of bended graphene as compared with pristine and twisted graphene. However, pristine graphene gives better spin filtration compared with twisted graphene at low voltages.  相似文献   

2.
Xu Y  Xia K  Ma Z 《Nanotechnology》2008,19(23):235404
We report a theoretical study on the spin and electron transport in the nonlocal lateral spin valve with a non-collinear magnetic configuration. The nonlocal magnetoresistance, defined as the voltage difference on the detection lead over the injected current, is derived analytically. The spin transfer torques on the detection lead are calculated. It is found that spin transfer torques are symmetrical for parallel and antiparallel magnetic configurations, in contrast to that in a conventional sandwiched spin valve.  相似文献   

3.
Huang J  Wang W  Yang S  Li Q  Yang J 《Nanotechnology》2012,23(25):255202
We present a theoretical study to explore the spin transport properties of FeN(4) complexes sandwiched between two armchair (5, 5) carbon nanotube (CNT) electrodes. The ab?initio modeling is performed by combining the spin-dependent density functional theory with nonequilibrium Green's function formalism. The calculated results clearly demonstrate that the transport properties of FeN(4) complexes are sensitive to the contact configuration. Near the Fermi level the conductance through three examined junctions is mainly governed by the spin-up electrons. The FeN(4) complex coupled to CNT electrodes with the π-type contact conjugation can act as a nearly perfect spin filter, and its spin filter efficiency is up to 98.0%. Our theoretical results demonstrate that FeN(4) complexes are promising for future molecular spintronics devices.  相似文献   

4.
We have systematically investigated three-dimensional spin configurations in ferromagnetic nanocubes using micromagnetic simulation with variation of cube geometry. For thin cuboids, a spin configuration exhibits a four-domain Landau state with a magnetic vortex structure at the center as in the case of a thin film square. For a thick cube, a complex spin configuration with an S-type cylindrically asymmetric vortex having two cores on a pair of surfaces while a leaf-like and a C-type states are observed on the other two pairs of cube surfaces. Competition between the geometrical symmetry and magnetic energy minimization condition in ferromagnetic nanocubes leads to the complex spin structure with a spontaneously broken symmetry.  相似文献   

5.
The spin-polarized electronic structure and half-metallicity of zigzag graphene nanoribbons (ZGNRs) with asymmetric edge terminations are investigated by using first-principles calculations. It is found that compared with symmetric hydrogen-terminated counterparts, such ZGNRs maintain a spin-polarized ground state with the anti-ferromagnetic configuration at opposite edges, but their energy bands are no longer spin degenerate. In particular, the energy gap of one spin orientation decreases remarkably. Consequently, the ground state of such ZGNRs is very close to half-metallic state, and thus a smaller critical electric field is required for the systems to achieve the half-metallic state. Moreover, two kinds of studied ZGNRs present massless Dirac-fermion band structure when they behave like half-metals.  相似文献   

6.
Maassen J  Ji W  Guo H 《Nano letters》2011,11(1):151-155
We report a first principles study of spin transport under finite bias through a graphene-ferromagnet (FM) interface, where FM = Co(111), Ni(111). The use of Co and Ni electrodes achieves spin efficiencies reaching 80% and 60%, respectively. This large spin filtering results from the materials specific interaction between graphene and the FM which destroys the linear dispersion relation of the graphene bands and leads to an opening of spin-dependent energy gaps of ≈0.4-0.5 eV at the K points. The minority spin band gap resides higher in energy than the majority spin band gap located near E(F), a feature that results in large minority spin dominated currents.  相似文献   

7.
The spin dynamics and the spin relaxation mechanisms of the superfluid3He-B were studied by using the NMR method in a slab geometry, where the superfluid3He-B was confined between narrow parallel plates with a gap smaller than the healing length of then-texture and the magnetic field was applied parallel to the plates. The relaxation parameter in the Leggett-Takagi (LT) equations was determined from a line width measurement of the transverse CW NMR. By using the pulsed NMR method, spin dynamics were studied in the nonlinear region. The observed spin dynamics were in good agreement with a numerical calculation of the LT equations together with the relaxation parameter determined by the CW NMR. When the tipping angle became larger than a certain critical value, the superfluid3He-B entered the Brinkman-Smith (BS) state. In this case, we observed the slow relaxation process in the BS state and then the rapid recovery process from the BS state to the initial non-Leggett configuration. The slow process in the BS state was attributed to the surface relaxation mechanism due to the torque from the surface-field energy.  相似文献   

8.
We have measured the electronic transport properties of the coupled quantum dot devices at low temperatures. The interplay between the strong many body spin interaction and the molecular states are probed in linear and non-linear transport regime. We observe the formation of strong coherent molecular states clearly visible in the double dot conductance phase diagram. In our study, the spin configuration in multiply coupled quantum dots could be identified using Kondo phenomenon. In addition, the characteristics of the spin dependent molecular states and phase dependant tunneling have been also observed using non-linear conductance measurement of the double dots. The results suggest the importance of the diverse spin related physical issues in artificial quantum dot devices.  相似文献   

9.
We report a positive spin valve effect—low resistance for parallel electrodes configuration—in organic spin valves fabricated by vacuum thermal evaporation using half-metal perovskite manganites La0.67Sr0.33MnO3 as the bottom electrode, cobalt as the top electrode, and tris(8-hydroxyquinoline) aluminum (Alq3) as the organic semiconductor spacer. A positive giant magnetoresistance (GMR) of ~12% has been observed at 100 K. The origination mechanism of negative and positive GMR in organic spin valves has been discussed in detail.  相似文献   

10.
We present a theoretical study of the spectral and the spin-dependent transport properties of a few electron semiconductor parallel double quantum dot (DQD) in the presence of local induced Zeeman splittings at the quantum dots. Working in an extended Hubbard model and treating the coupled QD as a single coherent system, the linear response spin-dependent conductance is calculated at low temperatures. We analyze the conditions such that the device would operate as a bipolar spin filter by only varying the incident electron Fermi energy from non-magnetic leads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号