首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Quality Si films were grown on a metal silicide template and fabricated for a Schottky-diode. The thin metal was firstly deposited and reacted to the supplying Si and then formed the silicide layer, which is a template to grow quality Si film above it due to the lattice affinity to Si. Various types of metal (Co, Ni, and mixture of Co and Ni) were used as catalyst species. The morphological changes of Si grain sizes were systematically investigated. Two steps of Si supply condition were applied and revealed the formation of metal silicide phases and Si film growth.During the Si supply, Co was stable to form CoSi2 and grew a crystalline Si (c-Si) film above it. However Ni firstly formed Ni rich silicide phases at low Si supply due to the fast Ni diffusion in Si. By increasing the Si supply, Ni diffusion has been staggered and formed NiSi2 layer to grow a c-Si film above it. It has been also revealed that the NiSi2 migration produced a c-Si film behind. Mixing of Co with Ni showed a stable silicide phase without a serious metal migration and improved the Si crystallinity providing an enhanced Schottky-diode performance.The investigation of silicide formation and quality Si film growth is presented. Transmission electron microscope analysis proves the volume growth of c-Si film above a metal disilicide of NiSi2 or CoSi2.  相似文献   

2.
Diffusion effects and silicide formation in double layers of electron-gun-evaporated thin films of nickel and platinum on 〈100〉 and 〈111〉 silicon substrates were studied by megaelectronvolt backscattering spectrometry, transmission electron microscopy and glancing angle X-ray diffraction as a function of heat treatment (200–900 °C) for both sequences of thin films. It was found for the Si/Ni/Pt(Si/Pt/Ni) system that Ni2Si(Pt2Si) starts growing first. When all the nickel (platinum) has been consumed by this compound growth, platinum (nickel) diffuses through the Ni2Si(Pt2Si) layer and accumulates at the SiNi2Si(SiPt2Si) interface. This platinum (nickel) diffusion seems to be a grain boundary diffusion.For 〈100〉 Si/Ni/Pt samples with thin platinum layers it has been shown that platinum acts as a marker for the moving species in the transition from Ni2Si to NiSi. For thick platinum layers it was observed that similar processes occur, leading to essentially a four-layered silicide where the layers are alternately rich in nickel and rich in platinum (450 °C, 20 min). In the silicide for the 〈100〉 Si/Pt/Ni system the distribution of nickel and platinum is approximately the reverse of the asdeposited distribution (about 450 °C, 20 min). In the further evolution of the profiles the elemental distribution becomes smooth and flat for both sequences of the layers (750 °C, 20 min). We suggest the existence of a ternary of the type SiNi1?xPtx.  相似文献   

3.
It is shown that isothermal heat treatment of (Ni-Pt)/Si and Pt/Ni/Si heterostructures leads to the formation of oriented Ni-and Pt-based silicide solid solutions. Owing to the three equivalent azimuth orientations in the basic lattice orientation relationship for the Si-Ni1?x PtxSi system, the resulting silicides have a nanocrystalline substructure. The stability of the substructure is due to the optimal interfacial lattice match and near-special grain-boundary misorientations. The silicide phases Ni1?x PtxSi and Pt1?y NiySi (or Ni1?x PdxSi and Pd1?y NiySi) may undergo segregation, having the same lattice orientation. In both systems, the segregation is associated with the predominant Ni diffusion. The second component (Pt) is shown to stabilize the orthorhombic Ni-based silicide and to prevent NiSi2 formation. Photon processing accelerates diffusion and leads to the formation of phase-pure Ni1?x PtxSi solid solutions.  相似文献   

4.
Silicides, intermetallic compounds formed by the reaction of a metal and Si, have long been used as contacts for metal oxide semiconductor (CMOS) transistors and have more become interesting for other Si nanowire (SiNW) devices. In the following, experimental results for the Ti, V, Pt, Pd, Fe, and Ni–Si systems are reported and placed in the context of prior work on silicide formation from metal films on Si wafers. For the early transition metals Ti and V, the silicide is formed only underneath the contact pad and is Si-rich (MSi2). For the middle transition metal Fe and late transition metals Pt and Pd, a metal-rich silicide was the first phase observed to form, but poor morphologies were common, making it a challenge to incorporate these contacts into nanowire devices. Nickel contacts were the only ones with well-behaved axial silicide growth away from the contact pad, and silicide formation was strongly dependent on the original SiNW orientation. These findings are discussed in terms of kinetic features of the metal-SiNW systems.  相似文献   

5.
Zr–Ti–N film prepared by sputtering deposition has been employed as a potential diffusion barrier for Cu metallization. It is thought that the existing states of Ti and Zr in the films are Ti–N and Zr–N phase in Zr–Ti–N films. Material analysis by XRD, XPS and sheet resistance measurement reveal that the failure of Zr–N film is mainly due to the formation of Cu3Si precipitates at the Zr–N/Si interface by Cu diffusion through the grain boundaries or local defects of the Zr–N barrier layer into Si substrate. In conjunction with sheet resistance measurement, XRD and XPS analyses, the Cu/Zr–Ti–N/Si contact system has high thermal stability at least up to 700 °C. The incorporation of Ti atoms into Zr–N barrier layer was shown to be beneficial in improving the thermal stability of the Cu/barrier/Si contact system.  相似文献   

6.
Ultra-thin cobalt silicide (CoSi2) was formed from 10 nm cobalt film by solid phase reaction of Co and Si by use of rapid thermal annealing (RTA). The Ge+ ion implantation through Co film caused the interface mixing of the cobalt film with the silicon substrate and resulted in a homogeneous silicide layer. XRD was used to identify the silicide phases that were present in the film. The metallurgical analysis was performed by RBS. XRD and RBS investigations showed that final RTA temperature should not exceed 800°C for thin (< 50 nm) CoSi2 formation.  相似文献   

7.
A novel multi-walled carbon nanotube (MWNT) growth process is reported based on carbon incorporation in a nickel catalyst layer deposited via plasma-enhanced atomic layer deposition (PEALD) on silicon nanowires and silicon wafer substrates. As-deposited PEALD Ni films containing relatively high amounts of carbon (>18?at.%) were observed to promote the growth of MWNTs upon post-deposition rapid thermal annealing. For these films the carbon originated from the ALD precursor ligand and MWNT growth occurred in the absence of a vapor-phase carbon feedstock. MWNT growth relied on the formation of nickel silicide at the PEALD Ni/Si interface which increased the local carbon concentration in the Ni film sufficiently to promote carbon saturation/precipitation at Ni catalyst grains and nucleate MWNT growth. Similar MWNT growth from annealed PEALD Ni films was not observed on SiO(2)-coated Si wafer substrates, consistent with the role of silicidation in the observed Ni-catalyzed MWNT growth on Si. This MWNT growth mode requires neither the catalytic decomposition of a gaseous hydrocarbon source nor the high-temperature pyrolysis of metallocene materials and purposely avoids a catalyst diffusion barrier at the Si substrate, commonly used in MWNT growth processes on Si.  相似文献   

8.
Flow modulation chemical vapor deposition (FMCVD) with titanium tetrachloride (TiCl4) and ammonia (NH3) is effective for depositing titanium nitride (TiN) films with conformal morphology, good step coverage, low electrical resistivity, and low chlorine residual contamination. It means that FMCVD TiN film is a good candidate of diffusion barriers for copper interconnection technology in ULSI. But the diffusion barrier property of FMCVD TiN film against Cu diffusion has not been confirmed. So, firstly, we deposited Cu (100 nm)/FMCVD TiN (25 nm)/Si multilayer films and investigated the thermal stability of Cu/TiN/Si structure. Vacuum annealing was done at 400, 500, 550 and 600 °C. For films annealed for 30 min at 400 °C, Cu diffused through the TiN layer and formed copper silicides on the surface of Si substrates. Therefore, FMCVD films formed under such conditions are unsatisfactory diffusion barriers. To enhance the diffusion barrier property of FMCVD TiN films, we used sequential deposition to introduce a monolayer of Al atoms between two TiN films. Etch-pit tests showed that for TiN films with Al interlayer, Cu diffusion through the barrier occurred at 500 °C and that is 100 °C higher than TiN film without Al interlayer. Al atoms formed AlOx with oxygen atoms present in the TiN films as impurities, and fill up the grain boundaries of TiN film, thereby blocking the diffusion of Cu atoms.  相似文献   

9.
《Thin solid films》1998,320(1):141-146
Thermal stability and barrier performance of reactively sputter deposited Ta–Si–N thin films between Si and Cu were investigated. RF powers of Ta and Si targets were fixed and various N2/Ar flow ratios were adopted to change the amount of nitrogen in Ta–Si–N thin films. The structure of the films are amorphous and the resistivity increases with nitrogen content. After annealing of Si/Ta–Si–N(300 Å)/Cu(1000 Å) structures in Ar–H2 (10%) ambient, sheet resistance measurement, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and Auger electron spectroscopy (AES) were employed to characterize barrier performance. Cu3Si and tantalum silicide phase are formed at the same temperature, and the interdiffusion of Si and Cu occurs through the local defect sites. In all characterization techniques, nitrogen in the film appears to play an important role in thermal stability and resistance against Cu diffusion. A 300 Å thick Ta43Si4N53 barrier shows the excellent barrier property to suppress the formation of Cu3Si phase up to 800°C.  相似文献   

10.
The surface morphology including pinhole and silicide formation mechanism of codeposited ytterbium silicide films are investigated with various compositions of Yb and Si. Film properties depend on the growth mode of the deposited films. At Si compositions more than half of the stable phase of ytterbium silicide, films have a rough surface with islands of ytterbium silicide formed by the Stranski-Krastanov and Volmer-Weber growth mode. At Si composition below half of the stoichiometic value, films grow in a layer by layer, Frank-van der Merwe mode, with a smooth surface. The transition of the formation mode is due to a trade-off in the dominance of the reaction between the internal atoms in the deposited films or between the deposited films and the substrates. A Si composition of 0.59 provides the smoothest surface with roughness of 1.13 nm in root mean square value and no observed pinholes. Ytterbium silicide films are deposited with a 5% composition tolerance by cosputtering and forming at 450 °C in a conventional furnace.  相似文献   

11.
β-NiAl coatings with different Ni/Al ratios were deposited on K403 superalloy substrates via magnetron sputtering. The phase transformation and diffusion phenomenon of the NiAl/Ni-based superalloy system after vacuum annealing at 900 and 1000 °C were analyzed using X-Ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) and energy dispersive X-ray spectrometry (EDS). The effect of coating concentrations on the outward diffusion behavior of substrate elements was discussed. The high Cr concentrations in the Al-rich NiAl coatings were caused by the intense interdiffusion between Al and Cr. The Ti, W and Mo partitioned to γ′-Ni3Al in the coatings. Several possible reasons for the formation of γ′-Ni3Al at the surface of Ni-rich NiAl coating were identified, including: diffusion behavior of W and Mo in β-NiAl, destabilizing effect of substrate elements on β-NiAl, and diffusion rates of Ni and Al in β-NiAl. The volume change in β ⇛ γ′ transformation process shows Ni uphill diffused to the γ′-Ni3Al islands at the surface of Ni-rich NiAl coatings. The IDZ (interdiffusion zone) thickness and precipitates in IDZ were related to the Al initial concentrations in the coatings.  相似文献   

12.
A. Lakatos  A. Csik  G. Erdelyi  L. Daroczi  J. Toth 《Vacuum》2009,84(1):130-2367
One of the most important processes in Cu metallization for highly integrated circuits is to fabricate reliable diffusion barriers. Recently, thin films made of refractory metals and their compounds have been widely used in solid-state electronics as barriers because of their good electric properties, favourable thermal properties and chemical stability. Thermal stability of Tantalum (Ta) and Tantalum-oxide (TaOx) layers as a diffusion barrier in Si/Ta/Cu, Si/TaOx/Cu and Si/Ta-TaOx/Cu systems have been investigated. Si/Ta (10 nm)/Cu (25 nm)/W (10 nm), Si/TaOx (10 nm)/Cu (25 nm)/W (10 nm) and Si/Ta (5 nm)TaOx (5 nm)/Cu (25 nm)/W (10 nm) thin layers were prepared by DC magnetron sputtering. A tungsten cap layer was applied to prevent the oxidation of the samples during the annealing process. The samples were annealed at various temperatures (473 K-973 K) in vacuum. Transmission Electron Microscopy, X-ray diffraction, X-Ray Photoelectron Spectroscopy and Secondary Neutral Mass Spectrometry were used to characterize the microstructure and diffusion properties of the thin films. Our results show that at the beginning phase of the degradation of the Si/Ta/Cu system Ta atoms migrate through the copper film to the W/Cu interface. In the Si/TaOx/Cu system the crystallization of TaO and the diffusion of Si through the barrier determine the thermal stability. The Ta-TaO bilayer proved to be an excellent barrier layer between the Si and Cu films up to 1023 K. The observed outstanding performance of the combined film is explained by the continuous oxidation of Ta film in the TaOx-Ta bilayer.  相似文献   

13.
The penetration of platinum into silicon in the Ti/Pt/Au beam lead metallization system was investigated using scanning electron microscopy, electron probe microanalysis and X-ray diffraction. Specimens with different thicknesses of titanium and platinum deposited onto polycrystalline silicon (polysilicon) substrates by vacuum evaporation or r.f. sputtering were heat treated at 360 °C in 1 atm N2 for up to 2000 h. The platinum penetration was examined by counting the black spot defects under a metallurgical microscope. An increase in the thickness of the titanium layer was shown to be more effective in reducing the formation of defects than an increase in the thickness of the platinum layer. This indicates the role of titanium as a diffusion barrier. The most striking fact is the necessity of the presence of gold for defect formation. The defects were revealed by etching the silicon substrate to be spherical lumps and they consisted of platinum and silicon. X-ray diffraction spectra taken for specimens having a Pt/Ti/polysilicon structure with or without a gold layer on the platinum indicated the effect of gold in promoting the breakdown of the titanium layer as a diffusion barrier and on the formation of platinum silicide. A model for the mechanism is proposed in which the localized formation of platinum silicide is enhanced by gold at a defect in the titanium layer.  相似文献   

14.
Palladium films, 45 nm thick, evaporated on to Si(111) were irradiated to various doses with 78 keV Ar+ ions to promote silicide formation. Rutherford backscattering spectroscopy (RBS) shows that intermixing has occurred across the Pd/Si interface at room temperature. The mixing behaviour is increased with dose which coincides well with the theoretical model of cascade mixing. The absence of deep RBS tails for palladium and the small area of this for silicon spectra indicate that short-range mixing occurs. From the calculated damage profiles computed with TRIM code, the dominant diffusion species is found to be silicon atoms in the Pd/Si system. It is also found that the initial compound formed by Ar+ irradiation is Pd2Si which increases with dose. At a dose of 1×1016 Ar+ cm–2, a 48 nm thickness of Pd2Si was formed by ion-beam mixing at room temperature.  相似文献   

15.
The influences of stress on the interfacial reactions of Ti and Ni metal thin films on (0 0 1)Si have been investigated. Compressive stress present in the silicon substrate was found to retard significantly the growth of Ti and Ni silicide thin films. On the other hand, the tensile stress present in the silicon substrate was found to enhance the formation of Ti and Ni silicides. For Ti and Ni on stressed (0 0 1)Si substrates after rapid thermal annealing, the thicknesses of TiSi2 and NiSi films were found to decrease and increase with the compressive and tensile stress level, respectively. The results clearly indicated that the compressive stress hinders the interdiffusion of atoms through the metal/Si interface, so that the formation of metal silicide films was retarded. In contrast, tensile stress facilitates the interdiffusion of atoms. As a result, the growth of Ti and Ni silicide is promoted.  相似文献   

16.
The microstructure and solidification behavior of Cu–Ni–Si alloys with four different Cu contents was studied systematically under near-equilibrium solidification conditions. The microstructures of these Cu–Ni–Si alloys were characterized by SEM and the phase composition was identified by XRD analysis. The phase transition during the solidification process was studied by DTA under an Ar atmosphere. The results show that the microstructure and solidification behavior is closely related to the composition of Cu–Ni–Si alloys. The microstructure of Cu–Ni–Si alloys with higher than 40% Cu content consists of primary phase α-Cu(Ni, Si) and eutectic phase (β1-Ni3Si + α-Cu(Ni,Si).When the Cu content is about 40%, only the eutectic phase (β1-Ni3Si + α-Cu(Ni,Si)) is present. DTA analysis shows there are three phase transitions during every cooling cycle of alloys with higher than 40% Cu content, but only one for 40% Cu content. Cu–Ni–Si alloy with 40% Cu solidifies by a eutectic reaction, but Cu–Ni–Si alloys with higher than 40% Cu content solidify as a hypoeutectic reaction.  相似文献   

17.
An amorphous Ta-Zr alloy film was studied as a diffusion barrier in the Cu metallization. On the experimental part, a Cu/Ta50Zr50/Si stack with thickness of 50 nm amorphous film was first prepared by sputtering and found effectively to suppress the penetration of Cu atoms into the substrate under rapid thermal annealing up to 650 °C. However, by examining the thermal stability of the barrier it revealed that these amorphous Ta50Zr50 films crystallized at 800 °C, much higher than its failure temperature. Moreover, three metal silicides, TaSi2, ZrSi2 and Cu3Si were found almost simultaneously when samples annealed at 650 °C. This result indicates that the existence of Cu layer not only promotes the diffusion of Ta and Zr to form metal silicides but also the diffusion of itself to pass through the barrier film to react with Si. A failure mechanism of the diffusion barrier is therefore proposed and verified quantitatively based on the relation between the thermal stress and the activation energy of diffusion.  相似文献   

18.
《Materials Letters》2005,59(14-15):1741-1744
Ba0.5Sr0.5TiO3 (BST) thin films have been deposited by r.f. magnetron sputtering on silicon and platinum-coated silicon substrates with different buffer and barrier layers. BST films deposited on Si/SiO2/SiN/Pt and Si/SiO2/Ti/TiN/Pt multilayer bottom electrode have been used for the fabrication of capacitors. XRD and SEM studies were carried out for the films. It was found that the crystallinity of the BST thin film was dependent upon oxygen partial pressure in the sputtering gas. The role of multilayered bottom electrode on the electrical properties of Ba0.5Sr0.5TiO3 films has been also investigated. The dielectric properties of BST films were measured. The results show that the films exhibit pure perovskite phase and their grain sizes are about 80–90 nm. The dielectric properties of the BST thin film on Si/SiO2/Ti/TiN/Pt electrode was superior to that of the film grown on Si/SiO2/SiN/Pt electrode.  相似文献   

19.
The thermal stability of fully silicided NiSi with arsenic doping on silicon was investigated. The combination of full nickel silicidation gate electrodes and hafnium based high-k gate dielectrics is one of the most promising gate stacks to replace poly-Si/SiO2/Si gate stacks in the future complementary metal–oxide–semiconductor (CMOS) sub-45 nm technology node. The aims of the work were to investigate the Ni silicide phase-related issues associated with arsenic dopant and thermal annealing on Ni–FUSI/HfO2/Si and Ni–FUSI/HfSiO/Si gate stacks. It was found that arsenic-incorporation demonstrated some improvement in both morphology and phase stability of nickel silicided films at high processing temperatures regardless underlying gate dielectrics. The correlations of Ni–Si phase transformation and arsenic doapnt with their electrical and physical changes were established by sheet resistance measurements, X-ray diffraction (XRD), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) analysis. Furthermore, the modulation of the work function (WF) of Ni fully silicided gates by arsenic impurity is presented, comparing the effects of dopant (As) on the WF and silicide phases (NiSi and NiSi2). It confirmed that the work function of NiSi can be tuned by implanting arsenic dopant, but it ineffective for NiSi2 phase.  相似文献   

20.
Processes of diffusion and silicide formation in stressed multilayers of Mo/Si, as a result of their isothermal annealing, were studied in this paper by methods of cross-sectional transmission electron microscopy and X-ray diffraction techniques. It was found that reaction with growth of molybdenum disilicide of reduced density takes place at Mo-on-MoSi2 interfaces up to formation of ∼ 7 nm thick layers, due to annealing treatment within 350-400 °C temperature range. Silicon atoms were found to be the dominating diffusive components. As a result of Si atoms' diffusion from Si layer, sublayers of a somewhat lower density are being formed at MoSi2-on-Si interfaces. Growth of molybdenum disilicide is accompanied by reduction of multilayer period. Activation energy of diffusion process (phase formation) makes up ∼ 2.2 eV. Influence of compressive stresses (that exist in Mo layers) on process of phase formation, both in as-deposited and in annealed samples, is discussed in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号