首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
改善尖晶石锰酸锂的大倍率性能是目前锂离子电池的重点研究方向之一。本研究用高温固相法合成掺K+的尖晶石锰酸锂, 研究K+提高锰酸锂倍率性能的微观机制。结果表明, 尽管随着电流密度增大, 电极的放电比容量下降, 但掺K+提高材料的大倍率性能效果显著, 如最佳掺K+量(物质的量分数)1.0%时, 在10C (1C=150 mA·g-1)下比容量提高了一倍, 远高于0.5C下的1.9%。原因在于掺K+后, 首先, 锰酸锂的晶胞体积扩大, Li-O键变长, Li、Mn阳离子混排程度降低, 载流子(Mn3+)量增多; 其次, 电极极化和电荷迁移阻抗降低, 提高了材料的充放电可逆性、导电性及锂离子扩散能力; 再者, [Mn2]O4骨架更稳定, 减小了电化学过程中内应力变化, 抑制了晶体结构变化和颗粒破碎; 最后, 钾离子掺杂使制备过程中材料团聚, 从而减小电解液与电极的接触面积, 减轻电解液的侵蚀, 抑制锰的溶解。  相似文献   

2.
郭云霞  梅天庆 《功能材料》2007,38(A04):1398-1400
采用溶胶-凝胶法制备层状LiMnO2的正极材料,并对其进行不同比例的过渡元素钴镍镧铈掺杂改性。用XRD以及SEM对其进行物相和表面形貌的分析,同时用锂离子电池模具装配电池以及进行恒电流充放电、循环伏安等电化学测试,分析了掺杂元素对其电化学性能的影响。XRD分析结果表明所合成的锰酸锂材料呈斜方晶系,SEM形貌显示产物为明显的层状结构,循环充放电测试结果表明掺杂2%Ni2%Co6%Ce的层状锰酸锂正极材料的初次放电比容量为161.8mAh/g,循环稳定性较好:而掺杂了6%Co4%La的层状锰酸锂正极材料的初次放电容量为111.5mAh/g,表现了很好的电化学性能。  相似文献   

3.
尖晶石锰酸锂电池容量衰减是限制其大规模应用的瓶颈问题,抑制锰溶解是减少其容量衰减的重要措施之一.本文以MnCO_3和Li_2CO_3为原料,采用球磨结合高温固化的方法制备了尖晶石LiMn_2O_4原材料,采用溶胶-凝胶法实现对尖晶石锰酸锂进行表面包覆二氧化钛.将包覆后材料经过高温长时间煅烧,使得金属钛离子能扩散到锰酸锂颗粒材料表层中,形成LiTi_xMn_(2-x)O_4尖晶石结构薄层.通过对锰酸锂在高温电解液中的溶解对比性试验,给出掺杂薄层作用的直接证据,并对全电池高温环境下电化学循环性能进行了对比测试.结果表明,锰酸锂颗粒表面涂覆TiO_2后,经过750℃煅烧6 h,实现了在尖晶石LiMn_2O_4表面形成了LiMn_(2-x)Ti_xO_4掺杂薄层,其形态、结构均与LiMn_2O_4类似.表面掺杂TiO_2工艺能够显著抑制LiMn_2O_4高温环境下的锰离子溶解,提高锰酸锂电池的使用寿命和高温性能.  相似文献   

4.
以MnCO3和Li2CO3为原料,利用高温固相法制备了尖晶石锰酸锂活性材料,并用TiO2水溶胶对其表面进行掺杂包覆改性。对比研究了活性材料改性前后的微观形貌和结构变化,并对以活性材料为正极材料组成的纽扣电池进行了电化学表征,同时,测试了循环后正极材料在电解液中锰离子的溶解浓度。结果表明:球磨结合高温固相法可成功制备尖晶石型锰酸锂;改性处理并没有改变活性材料的结构,反而优化了CR2016型电池的循环性能;在55℃、1C倍率或10C倍率下,改性后样品首次放电容量比原样品分别提高了20%或1倍有余;高温高倍率循环后,改性后正极材料在电解液中浸泡15d后,电解液中锰离子浓度仅为原样品的一半。  相似文献   

5.
Li1+xCoyMn2-x-yO4的结构及电化学性能研究   总被引:2,自引:1,他引:1  
利用溶液相合成技术把钴掺入到主尖晶石相中制得掺钴尖晶石相材料.所合成的材料具有颗粒分布均匀及结晶性能好等特点.利用X射线粉末衍射仪、傅里叶变换红外分光光度计及扫描电子显微镜对所合成掺杂锂材料的结构性能进行表征.研究表明掺杂钴可提高材料的结构稳定性能,减少锰在电解液中溶解,减少锂离子在材料中迁移电阻.电化学性能测试结果表明所合成掺钴材料Li1.03Co0.05Mn1.92O4具有较好的初始容量及循环稳定性能.  相似文献   

6.
富锂层状氧化物材料具有较高的比容量,被认为是下一代先进锂离子电池正极材料。采用丙烯酸热聚合法和柠檬酸溶胶-凝胶法分别合成了纳米富锂锰基正极材料Li1.2Mn0.54Ni0.13Co0.13O2,并进行Mg2+掺杂改性。通过扫描电子显微镜、X射线粉末衍射仪对制备的正极材料进行形貌和结构表征,并组装成纽扣电池进行充放电性能测试和电化学阻抗谱分析。结果表明,丙烯酸热聚合法合成的正极材料粒径均匀,结晶度更高;与未掺杂样品相比,掺杂Mg2+的正极材料首次库伦效率从67.66%提高到73.34%,循环性能显著改善。  相似文献   

7.
为改善锂离子电池正极材料LiMn2O4的电化学循环性能,以乙酸锂、乙酸锰和乙酸锌为原料,采用固相法制备了LiMn2-xZnxO4(x=0.02、0.04、0.06),并与未掺杂的LiMn2O4进行性能比较。X射线衍射(XRD)和扫描电子显微镜(SEM)分析表明所制备的LiMn2-xZnxO4具有与LiMn2O4同样的尖晶石结构,锌的掺入细化了尖晶石颗粒,增强了Li+在固相中的扩散能力。电化学测试结果显示锌掺杂能抑制LiMn2O4的电化学容量衰减现象,使其循环性能得到显著提高。其中LiMn1.96Zn0.04O4表现出最佳的循环性能,循环20次后放电容量可保持在106.6mAh/g。  相似文献   

8.
为了改善尖晶石型Li4Ti5O12材料的电子电导率和离子导电性,许多研究者认为阳离子掺杂改性是较有效的途径之一。主要通过金属阳离子V5+,Mn4+,Fe3+,Al3+,Ga3+Co3+,Cr3+,Ni2+,Mg2+等取代锂位或者钛位来提高导电性,改善电化学特性。本文主要是通过高温固相法合成F-掺杂的尖晶石化合物Li4Ti5O12-xFx及对其电化学性能的影响。  相似文献   

9.
高明  孙晓刚  程利  吁霁 《材料导报》2011,25(18):63-65
以多壁碳纳米管(Multi-walled carbon nanotubes,MWCNTs)为添加相,对锰酸锂进行电化学性能改进,采用扫描电子显微镜对其进行观察,发现掺入的多壁碳纳米管均匀分布在锰酸锂颗粒表面。以改性后的锰酸锂为主要材料制成纽扣电池,采用交流阻抗及恒电流充放电等技术进行检测。结果表明,掺入1%MWCNTs后LiMn2O4的初始放电容量由改性前的123mAh/g下降到改性后的117mAh/g,在25℃经10次循环后容量保持率为97%,明显高于未掺入的91%。与未掺杂的LiMn2O4相比,虽然掺C或掺CNTs都使初始充放电容量有所降低,但是其循环性能明显提高。  相似文献   

10.
张靖  孙新艳  何岗  洪建和  何明中 《材料导报》2012,26(13):20-25,61
尖晶石型LiMn2O4正极材料目前还存在初始容量较低、容量衰减快、高温性能差等问题。表面改性是一种常用的改性方法,它能有效地改善锰酸锂的性能。主要介绍了金属氧化物、含Li化合物、聚合物、金属、氟化物、氧化物玻璃以及一些含氧盐对锰酸锂的表面改性及对其循环性能影响的研究进展,概括了锰酸锂不同表面改性方法的优缺点,并提出了可行的改进方案。  相似文献   

11.
采用无焰燃烧法在500℃反应3 h,然后分别在600、650、700和750℃二次焙烧6 h制备了尖晶石型Li1.02Ni0.05Mn1.93O4正极材料。结果表明,不同焙烧温度制备的Li-Ni共掺材料没有改变LiMn2O4的立方尖晶石结构,且随着焙烧温度的升高,颗粒尺寸变大,结晶性提高。二次焙烧温度为700℃的Li1.02Ni0.05Mn1.93O4单晶多面体晶粒正极材料具有{111}、{110}和{100}面,且电化学性能较优,在1 C倍率下初始放电比容量为108.2 mA·h·g?1,循环500次后的容量保持率为76.8%;在5 C下首次放电比容量可达到99.0 mA·h·g?1,1000次循环后,仍能维持72.1%的容量保持率;在10 C下仍显示出71.3 mA·h·g?1的首次放电比容量及经500次循环后86.4%的容量保持率。并且其具有较大的Li+扩散系数和较小的表观活化能。Li-Ni共掺LiMn2O4单晶多面体材料能够有效抑制Jahn-Teller效应,减小Mn的溶解及增加Li+扩散通道,使材料的晶体结构稳定,提高倍率性能和循环性能。   相似文献   

12.
采用水热法制得一种尖晶石型MgCo_(2)O_(4)海胆状电极材料,并通过X射线衍射(XRD)、X射线光电子能谱分析(XPS)、扫描电镜(SEM)、透射电镜(TEM)以及电化学工作站对产物进行了表征和电化学性能测试。通过改变所制备材料的水热反应时间,制备出团簇结构、分布较均匀以及密集度较高的MgCo_(2)O_(4)海胆状形貌。结果表明,当水热反应时间为6 h时所获得的MgCo_(2)O_(4)电极材料结构较为完善、尺寸较为均匀、电化学性能较为优异,而且在电流密度为1 mA/cm^(2)情况下,面积比电容高达6.75 F/cm^(2)。另外,对该MgCo_(2)O_(4)海胆状材料在20 mA/cm^(2)的电流密度下循环1000周次后,面积比电容保持为原来的88.4%,表现出良好的循环性能。  相似文献   

13.
The coaxial nanostructure composite materials of LiMn2O4 nanowires encapsulated in ZnO nanotubes are fabricated successfully via sol–gel method by using two-step template process. Transmission electron microscopy (TEM) and scanning electronic microscopy (SEM) results conformably show that the synthesized ZnO nanotubes possess the explicit end-opened tubular structure in uniform out diameter and wall thickness. Selected area electron diffraction (SAED) pattern, X-ray diffractometer (XRD), and X-ray photoelectron spectroscope (XPS) analysis jointly demonstrate that the main body of the fabricated coaxial composites is spinel structure LiMn2O4. It is expected that the two-step template process can be used to mass-produce coaxial LiMn2O4/ZnO nanocomposite materials as a novel cathode materials in lithium ion battery.  相似文献   

14.
采用原位溶剂热法,以氧化石墨烯(GO)与Co2+、Fe3+为原料制备疏松多孔的纳米CoFe2O4-还原氧化石墨烯(CoFe2O4-rGO)复合材料。采用XRD、Raman、SEM和HRTEM测试表征了纳米CoFe2O4-rGO复合材料的结构与形貌。测试结果表明,纳米CoFe2O4-rGO复合材料具有三维结构。自组装的多孔CoFe2O4纳米球粒径约为200 nm,在rGO上均匀分散,解决了CoFe2O4易团聚的问题。电化学测试结果表明,纳米CoFe2O4-rGO复合材料具有较高的比容量及优异的循环和倍率性能,在100 mA·g-1的电流密度下其比容量为1 262 mAh·g-1,50次循环后比容量仍能保持在642 mAh·g-1;并在2 000 mA·g-1的大电流密度下仍具有221 mAh·g-1的比容量。纳米CoFe2O4-rGO复合材料拥有更优异的电化学性能的原因在于CoFe2O4纳米球在rGO上均匀分布。三维结构增加了Li+储存的活性位点,有效缓解了电极的体积收缩/膨胀效应,提高了纳米CoFe2O4-rGO复合材料的导电性。   相似文献   

15.
电解水包括析氢反应(HER)与析氧反应(OER),由于OER是复杂的4电子转移过程,制作出具有优异耐久性的高活性的非贵金属OER电催化剂对于电解水至关重要。为了降低成本,选择304型不锈钢网(SS)作为基体,使用电沉积的方法制备钴-镍双氢氧化物,利用真空煅烧的方法制备钴-镍氧化物。使用XRD、SEM、TEM、XPS和电化学工作站对Co2Ni1O4/SS复合材料的晶体结构、形貌和电催化OER性能进行了研究。结果表明:电沉积制备的钴-镍双氢氧化物煅烧之后转变成尖晶石结构的钴-镍氧化物;在不锈钢表面成功合成了大量密集的层状结构;在1.0 mol/L KOH电解液中,Co2Ni1O4/SS电极表现出优异的OER电催化性能,达到10 mA·cm?2电流密度时所需要的过电位仅为240 mV,Tafel斜率为53.92 mV·dec?1,并且表现出优异的稳定性。   相似文献   

16.
Lithium has been inserted into, and extracted from, the spinel Li1.0V2O4 both electrochemically and chemically. Electrochemical and structural data show that in the system Li1+xV2O4, for 0 < x ≤ 0.5, Li+ ions are inserted into the interstitial octahedral sites of the Atet[B2]octX4 spinel structure. At x ≈ 0.5, Li+ ions in the tetrahedral A-sites are displaced into the remaining octahedral sites to yield, at x = 1, a rocksalt phase Li2V2O4; the [B2]X4 framework is unperturbed by the lithiation process. This framework also remains intact when Li+ ions are removed from Li1.0V2O4 to a composition Li0.67V2O4. Further extraction of lithium from the structure is accompanied by migration of some vanadium ions from the B-sites to the interstitial octahedral sites of the spinel structure. This process reduces the crystal symmetry from cubic to trigonal symmetry. In Li0.27V2O4 the structure resembles that of Li0.22VO2, obtained by delithiation of layered LiVO2, in which the vanadium cations are distributed in a 2:1 ratio between alternate cubic-close-packed oxygen layers; in the LiV2O4 spinel this ratio is 3:1.  相似文献   

17.
The spinel phase compounds with the composition of LiMn2−δVδOy were prepared by solid reaction of the mixture of LiNO3·H2O, MnCO3 and NH4VO3 powders. Evolution of the crystalline phases of the samples versus the vanadium content was analyzed using X-ray diffraction (XRD) technique, EPR and FT-IR spectroscopes. Cubic spinel is the predominant phase in the powders under heat treatment at 550 °C for 5 h. The valence state of manganese ion changed from +4 to +3 with vanadium substitution for charge compensation. The vanadium substitution of manganese leads the decline in capacity and cyclic behavior of the powders. The electrochemical behaviors relating to the variation of structure corresponding to the vanadium substitution were discussed.  相似文献   

18.
以5-磺基水杨酸和戊二酸为螯合和氧化试剂,在水热条件下将硫酸钴氧化成纳米级Co3O4。以碳纳米管薄膜为载体将Co3O4颗粒紧密地附着在碳纳米管上使其填充入碳纳米管薄膜的空隙生成Co3O4/碳纳米管复合材料薄膜(Co3O4@CNTs),并研究其储锂性能。电化学测试结果表明,Co3O4@CNTs薄膜具有较高的放电比容量和优异的倍率性能,在0.2C倍率下初始放电比容量高达1712.5 mAh·g-1,100圈循环后放电比容量为1128.9 mAh·g-1的;在1C倍率下100圈循环后放电比容量仍然保持527.8 mAh·g-1。Co3O4@CNTs薄膜优异的性能源于Co3O4与CNTs的协同作用。高分散性的Co3O4增大了活性材料与电解液之间的接触面积,CNTs有助于形成良好的导电网络提高电子电导率,进而提高了Co3O4负极材料的循环性能和倍率性能。  相似文献   

19.
用一种简单的方法制备了高性能的高电压尖晶石正极材料, 主要是调控正极材料中锂与过渡金属的摩尔比, 即通过Ni0.25Mn0.75(OH)2与Li2CO3进行高温固相反应制备了非化学计量比的Li1.05Ni0.5Mn1.5O4和化学计量比的LiNi0.5Mn1.5O4尖晶石型高电压正极材料。用扫描电子显微镜、X射线衍射、中子衍射、拉曼光谱、X射线光电子能谱以及循环伏安曲线对其形貌、晶体结构及元素价态和电化学性能进行了表征。研究发现, 非化学计量比的Li1.05Ni0.5Mn1.5O4中由于金属离子随机分布于16 d位置, 所以Ni/Mn阳离子无序化程度更高。非化学计量比的高电压正极材料具有更为优异的倍率性能, 并且在400次循环后比容量保持率高达91.2%。同时, 原位X射线衍射测试结果表明, 在充放电过程中非化学计量比的高电压正极材料发生连续单一的相转变, 可以提高晶体结构的稳定性。因此, 非计量比的尖晶石Li1.05Ni0.5Mn1.5O4正极材料在高能量密度的锂离子电池中具有更广阔的应用前景。  相似文献   

20.
MnO2为有前景的超级电容器正极材料,具有较高的理论比电容及良好的循环稳定性,但电子电导性不佳限制了其应用。采用一步水热法制备了还原氧化石墨烯(RGO)/NixMn1-x/2O2复合材料。通过XRD、SEM、TEM、FTIR、电化学分析等手段对制备的RGO/NixMn1-x/2O2物相组成、微观形貌和电化学性能进行了表征和分析。电化学测试结果表明:Ni元素的引入提高了MnO2的电容性能,以水热法制备的MnO2的比电容为66 F/g (扫描速度10 mV/s),而Ni元素掺杂量x=0.02时,Ni0.02Mn0.99O2比电容为111 F/g;材料中引入RGO后,RGO/NixMn1-x/2O2复合材料电容性能进一步提高,加入2wt%的RGO时,RGO/Ni0.02Mn0.99O2的比电容为136 F/g。RGO的引入提高了活性材料的电子迁移速率,Ni元素的掺杂造成了MnO2晶格中存在适量的点缺陷,提高了其导电性。以RGO/NixMn1-x/2O2为正极的超级电容器可同时具备双电层电容器和赝电容器的优点,以Ni掺杂MnO2和RGO的负载协同提高了该复合材料电化学性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号