首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
In this paper, analytical expressions for the quality factor (QF) of thermoelastic damping (TED) applying modified couple stress theory (MCST) are presented for plane stress and strain conditions. For gold and nickel micro-beam resonators, which have a considerable length-scale parameter as case studies, the effect of the length-scale parameter on the QF of TED has been discussed in details. Results for the QF of TED show that when the beam thickness is close to the length-scale parameter of the material, the MCST diverges from the classical theory; otherwise, the two theories converge to each other. Also critical thickness variation due to applying MCST is studied.  相似文献   

2.
Thermoelastic damping is a significant energy lost mechanism at room temperature in micro-scale resonators. Prediction of thermoelastic damping (TED) is crucial in the design of high quality MEMS resonators. In this study the governing equations of motion and the thermal couple equation of a microplate with an arbitrary rectangular shape are derived using the modified version of the couple stress theory. Analytical expressions are presented for calculating the quality factor (QF) of TED in a rectangular microplate considering the plane stress and plane strain conditions. As a case study, a rectangular microplate resonator is considered with material property of gold that has a considerably high value of length-scale parameter in comparison with silicon and the effect of the length-scale parameter on the QF of TED is discussed in detail. The relation between QF and temperature increment for microplates with clamped boundary conditions based on plane stress and plane strain models are studied and results obtained by considering classical and modified couple stress theory (MCST) are compared. The effect of thickness of the plate on the rigidity ratio is studied and the critical thickness which is an important design parameter is obtained using the MCST for three boundary conditions. Variations of TED versus the plate thickness for various boundary conditions according to the classical and the modified couple stress theories are investigated.  相似文献   

3.
The size-dependent natural frequency of Bernoulli-Euler micro-beams   总被引:2,自引:0,他引:2  
The dynamic problems of Bernoulli-Euler beams are solved analytically on the basis of modified couple stress theory. The governing equations of equilibrium, initial conditions and boundary conditions are obtained by a combination of the basic equations of modified couple stress theory and Hamilton’s principle. Two boundary value problems (one for simply supported beam and another for cantilever beam) are solved and the size effect on the beam’s natural frequencies for two kinds of boundary conditions are assessed. It is found that the natural frequencies of the beams predicted by the new model are size-dependent. The difference between the natural frequencies predicted by the newly established model and classical beam model is very significant when the ratio of characteristic sizes to internal material length scale parameter is approximately equal to one, but is diminishing with the increase of the ratio.  相似文献   

4.
A non-classical Mindlin plate model is developed using a modified couple stress theory. The equations of motion and boundary conditions are obtained simultaneously through a variational formulation based on Hamilton??s principle. The new model contains a material length scale parameter and can capture the size effect, unlike the classical Mindlin plate theory. In addition, the current model considers both stretching and bending of the plate, which differs from the classical Mindlin plate model. It is shown that the newly developed Mindlin plate model recovers the non-classical Timoshenko beam model based on the modified couple stress theory as a special case. Also, the current non-classical plate model reduces to the Mindlin plate model based on classical elasticity when the material length scale parameter is set to be zero. To illustrate the new Mindlin plate model, analytical solutions for the static bending and free vibration problems of a simply supported plate are obtained by directly applying the general forms of the governing equations and boundary conditions of the model. The numerical results show that the deflection and rotations predicted by the new model are smaller than those predicted by the classical Mindlin plate model, while the natural frequency of the plate predicted by the former is higher than that by the latter. It is further seen that the differences between the two sets of predicted values are significantly large when the plate thickness is small, but they are diminishing with increasing plate thickness.  相似文献   

5.
基于一种新修正偶应力理论建立了微尺度平面正交各向异性功能梯度梁模型。模型中包含两个材料尺度参数,因此能够分别描述在两个正交方向上由尺度效应带来的不同大小弯曲刚度增强。基于最小势能原理推导了平衡方程和边界条件,并以自由端受集中载荷作用的悬臂梁为例给出了弯曲问题的解析解。该梁模型的控制方程以及解的形式和经典梁模型是一致的,只是在刚度项中增加了一项和尺度效应有关的项。算例结果表明:采用本文模型所预测的梁挠度总是小于经典理论的结果,即捕捉到了尺度效应。尺度效应会随着梁几何尺寸的减小而增大,并在梁的几何尺寸远大于尺度参数时逐渐消失。  相似文献   

6.
In this paper, the resonant frequency and sensitivity of atomic force microscope (AFM) microcantilevers are studied using the modified couple stress theory. The classical continuum mechanics is incapable of interpreting micro-structure-dependent size effects when the size of structures is in micron- and sub-micron scales. However, this dependency can be well treated by using non-classical continuum theories. The modified couple stress theory is a non-classic continuum theory which employs additional material parameters besides those appearing in classical continuum theory to treat the size-dependent behavior. In this work, writing differential equations of motion of AFM cantilevers together with appropriate boundary conditions based on the couple stress theory, the analytical expressions are derived for the natural frequency and sensitivity. According to the numerical results, when the ratio of beam thickness to the material length scale parameter is less than 10, the difference between the classical based and the couple stress based results of resonance frequencies and sensitivities is considerable. The results show the significant importance of the size effects in behavior of AFM microcantilevers.  相似文献   

7.
In this paper, a size-dependent formulation is presented for Timoshenko beams made of a functionally graded material (FGM). The formulation is developed on the basis of the modified couple stress theory. The modified couple stress theory is a non-classic continuum theory capable to capture the small-scale size effects in the mechanical behavior of structures. The beam properties are assumed to vary through the thickness of the beam. The governing differential equations of motion are derived for the proposed modified couple-stress FG Timoshenko beam. The generally valid closed-form analytic expressions are obtained for the static response parameters. As case studies, the static and free vibration of the new model are respectively investigated for FG cantilever and FG simply supported beams in which properties are varying according to a power law. The results indicate that modeling beams on the basis of the couple stress theory causes more stiffness than modeling based on the classical continuum theory, such that for beams with small thickness, a significant difference between the results of these two theories is observed.  相似文献   

8.
杨子豪  贺丹 《复合材料学报》2017,34(10):2375-2384
基于一种新修正偶应力理论建立了微尺度平面正交各向异性功能梯度梁的自由振动模型。模型中包含两个材料尺度参数,能够分别描述两个正交方向上不同程度的尺度效应。当梁的几何尺寸远大于材料尺度参数时,本文模型亦可自动退化为相应的传统宏观模型。基于哈密顿原理推导了运动控制方程并以简支梁的自由振动为例分析了几何尺寸、功能梯度变化指数等对尺度效应产生的影响。算例结果表明:采用本文模型所预测的梁自振频率总是大于传统理论的结果,即捕捉到了尺度效应。尺度效应会随着梁几何尺寸的增大而逐渐减弱并在几何尺寸远大于尺度参数时消失;高阶自振频率所体现出的尺度效应较低阶自振频率更加明显。此外,功能梯度变化指数对尺度效应也有一定的影响。  相似文献   

9.
The buckling behavior of size-dependent microbeams made of functionally graded materials (FGMs) for different boundary conditions is investigated on the basis of Bernoulli–Euler beam and modified strain gradient theory. The higher-order governing differential equation for buckling with all possible classical and non-classical boundary conditions is obtained by a variational statement. The effects of the power of the material property variation function, boundary conditions, slenderness ratio, ratio of additional material length scale parameters for two constituents, beam thickness-to-additional material length scale parameter ratio on the buckling response of FGM microbeams are investigated. Some comparative results are presented in tabular and graphical form in order to show the differences between the results obtained by the present model and those predicted by modified couple stress and classical continuum models.  相似文献   

10.
A non-classical third-order shear deformation plate model is developed using a modified couple stress theory and Hamilton’s principle. The equations of motion and boundary conditions are simultaneously obtained through a variational formulation. This newly developed plate model contains one material length scale parameter and can capture both the size effect and the quadratic variation of shear strains and shear stresses along the plate thickness direction. It is shown that the new third-order shear deformation plate model recovers the non-classical Reddy-Levinson beam model and Mindlin plate model based on the modified couple stress theory as special cases. Also, the current non-classical plate model reduces to the classical elasticity-based third-order shear deformation plate model when the material length scale parameter is taken to be zero. To illustrate the new model, analytical solutions for the static bending and free vibration problems of a simply supported plate are obtained by directly applying the general forms of the governing equations and boundary conditions of the model. The numerical results show that the deflection and rotations predicted by the new plate model are smaller than those predicted by its classical elasticity-based counterpart, while the natural frequency of the plate predicted by the former is higher than that by the latter. It is further seen that the differences between the two sets of predicted values are significant when the plate thickness is small, but they are diminishing with increasing plate thickness.  相似文献   

11.
A size-dependent, explicit formulation for coupled thermoelasticity addressing a Timoshenko microbeam is derived in this study. This novel model combines modified couple stresses and non-Fourier heat conduction to capture size effects in the microscale. To this purpose, a length-scale parameter as square root of the ratio of curvature modulus to shear modulus and a thermal relaxation time as the phase lag of heat flux vector are considered for predicting the thermomechanical behavior in a microscale device accurately. Governing equations and boundary conditions of motion are obtained simultaneously through variational formulation based on Hamilton’s principle. As for case study, the model is utilized for simply supported microbeams subjected to a constant impulsive force per unit length. A comparison of the results with those obtained by the classical elasticity and Fourier heat conduction theories is carried out. Findings indicate that simultaneous considering the length-scale parameter and thermal relaxation time has strong influence on the thermoelastic behavior of microbeams. In dynamic thermoelastic analysis of the microbeam, while the non-Fourier heat conduction model is employed, the modified couple stress theory predicts larger deflection compared with the classical theory.  相似文献   

12.
A class of higher-order continuum theories, such as modified couple stress, nonlocal elasticity, micropolar elasticity (Cosserat theory) and strain gradient elasticity has been recently employed to the mechanical modeling of micro- and nano-sized structures. In this article, however, we address stability problem of micro-sized beam based on the strain gradient elasticity and couple stress theories, firstly. Analytical solution of stability problem for axially loaded nano-sized beams based on strain gradient elasticity and modified couple stress theories are presented. Bernoulli–Euler beam theory is used for modeling. By using the variational principle, the governing equations for buckling and related boundary conditions are obtained in conjunctions with the strain gradient elasticity. Both end simply supported and cantilever boundary conditions are considered. The size effect on the critical buckling load is investigated.  相似文献   

13.
In this paper, the size-dependent static and vibration behavior of micro-beams made of functionally graded materials (FGMs) are analytically investigated on the basis of the modified couple stress theory in the elastic range. Functionally graded beams can be considered as inhomogeneous composite structures, with continuously compositional variation from usually a ceramic at the bottom to a metal at the top. The governing equations of motion and boundary conditions are derived on the basis of Hamilton principle. Closed-form solutions for the normalized static deflection and natural frequencies are obtained as a function of the ratio of the beam characteristic size to the internal material length scale parameter and FGM distribution functions of properties. The results show that the static deflection and natural frequencies developed by the modified couple stress theory have a significant difference with those obtained by the classical beam theory when the ratio of the beam characteristic size to the internal material length scale parameter is small.  相似文献   

14.
微尺寸梁存在明显尺寸效应,应变梯度理论可以描述这种尺寸效应。该文基于修正偶应力理论,应用双层梁与单层梁的等效关系,给出了双层微梁的动力学模型,具体求解了简支双层微梁的固有频率,并分析了微梁特征尺寸及双材料参数对双层微梁固有特性的影响规律。结果表明,当双层微梁的厚度接近材料内秉特征尺寸参数时,其固有频率值明显大于传统理论下的值;当双层微梁的厚度远大于材料内秉特征尺寸时,其固有频率值与传统理论下的值基本一致。双层微梁无量纲固有频率表现出明显尺寸效应,并随双材料参数的改变表现出一定的差异。当一层梁厚度远大于另一层厚度时,双层微梁可简化为单层微梁。  相似文献   

15.
The transverse vibration of a rotary tapered microbeam is studied based on a modified couple stress theory and Euler–Bernoulli beam model. The governing differential equation and boundary conditions are derived according to Hamilton's principle. The generalized differential quadrature element method is then used to solve the governing equation for cantilever and propped cantilever boundary conditions. The effect of the small-scale parameter, beam length, rate of cross-section change, hub radius, and nondimensional angular velocity on the vibration behavior of the microbeam is presented.  相似文献   

16.
Abstract

In this research paper, lateral vibration analysis of simply-supported microbeam under thermal stress is investigated. Microbeam model is presented based on the modified couple stress theory and Timoshenko beam theory. Thermo-mechanical properties of the microbeam are assumed variable by temperature shifts. This means that any shift in the temperature leads to different thermo-mechanical properties. Thermal stress is induced to the system due to the temperature difference between the lateral surfaces and the system itself. Major novelty of the current research includes the variable nonclassical length scale parameter. The mentioned parameter derived from the modified couple stress theory is assumed variable based on the power law. Hamilton’s approach is taken to derive the system of governing equations of motion. The mentioned coupled system of equations is solved using the Navier method. For verification, current results are compared with those available at benchmark. This research implies the importance of temperature, distribution profile of nonclassical length scale parameter, and slenderness ratio upon dynamic responses of the present model based on both classical and modified couple stress theories.  相似文献   

17.
ABSTRACT

The modified couple stress theory (MCST) is utilized to investigate the bending of viscoelastic nanobeams laying on visco-Pasternak elastic foundations based on a new shear and normal deformations beam theory. This model consists of the material length scale coefficient that captures the size impact on small-scale beams. The simply supported beam is made of viscoelastic material, subjected to time harmonic transverse load. The nanobeam is presumed to be laying on double layers of foundations. The first layer is modeled as Kelvin–Voigt viscoelastic model and the second is taken as a shear layer. Based on the proposed beam theory and MCST, the differential motion equations are deduced using Hamilton’s principle. To check the validity of the obtained formulations, the predicted results are compared with those available in the open literature. In addition, the influences of various parameters such as the material length scale parameter, length-to-depth ratio, viscoelastic damping structure, the stiffness and damping coefficients of the viscoelastic substrate, and shear and normal strains on the deflection and stresses are illustrated.  相似文献   

18.
Based on a modified couple stress theory, a model for composite laminated beam with first order shear deformation is developed. The characteristics of the theory are the use of rotation–displacement as dependent variable and the use of only one constant to describe the material’s micro-structural characteristics. The present model of beam can be viewed as a simplified couple stress theory in engineering mechanics. An example as a cross-ply simply supported beam subjected to cylindrical bending loads of fw = q0 sin (πx/L) is adopted and explicit expression of analysis solution is obtained. Numerical results show that the present beam model can capture the scale effects of microstructure, and the deflections and stresses of the present model of couple stress beam are smaller than that by the classical beam mode. Additionally, the present model can be reduced to the classical composite laminated Timoshenko beam model, Isotropic Timoshenko beam model of couple stress theory, classical isotropic Timoshenko beam, composite laminated Bernoulli–Euler beam model of couple stress theory and isotropic Bernoulli–Euler beam of couple stress theory.  相似文献   

19.
In this paper, a new anisotropic constitutive relation based on a modified couple-stress theory is defined for composite laminated Reddy beam. The theory contains only one material length-scale parameter in each ply of the composite laminated beam. The example of a cross-ply simply supported beam subjected to transverse load q0sin(πx/L) is presented. Numerical results show that the proposed beam model can capture the scale effect of the microstructure. The proposed model can be reduced to several models of the modified couple-stress theory by adopting the assumptions in Timoshenko beam, Bernoulli–Euler beam and material isotropy. It can be seen that the deflections and stresses obtained by the proposed beam model are smaller than those based on Timoshenko and Bernoulli–Euler beam assumptions.  相似文献   

20.
In this paper, a nonlinear size-dependent Euler–Bernoulli beam model is developed based on a strain gradient theory, capable of capturing the size effect. Considering the mid-plane stretching as the source of the nonlinearity in the beam behavior, the governing nonlinear partial differential equation of motion and the corresponding classical and non-classical boundary conditions are determined using the variational method. As an example, the free-vibration response of hinged-hinged microbeams is derived analytically using the Method of Multiple Scales. Also, the nonlinear size-dependent static bending of hinged-hinged beams is evaluated numerically. The results of the new model are compared with the results based on the linear strain gradient theory, linear and nonlinear modified couple stress theory, and also the linear and non-linear classical models, noting that the couple stress and the classical theories are indeed special cases of the strain gradient theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号